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A B S T R A C T

In this work, a machine-learning approach was applied to obtaining an interatomic potential for lattice dynamics
properties calculation with accuracy close to the one of density functional theory (DFT). The computational
efficiency of the potential allows one to access large time and length scales through molecular dynamics si-
mulations. The use of active learning and an automatic training procedure greatly reduces the number of
quantum-mechanical calculations for the training set. In order to estimate the accuracy of the obtained poten-
tials, four materials Al, Mo, Ti and U with different phonon and thermodynamic properties were investigated.
Phonon properties were calculated using the temperature dependent effective potential method. The potentials
reproduce not only harmonic behavior but also anharmonic effects, as shown by the calculation of the third-
order force constants. We found that machine-learning potentials reproduce quantum-mechanical data with high
accuracy. Furthermore, the vibrational density of states was obtained via velocity autocorrelation function in-
tegration, which would be infeasible in direct quantum-mechanical simulations.

1. Introduction

Nowadays, applications of computer modeling in science is a rapidly
growing area. For example, scientific modeling is used in all branches of
physics, biology, and chemistry. The complexity of the modern pro-
blems that researchers face requires the simulation of realistic systems
with the accuracy close to the experimental one. In particular, the
broad range of such problems needs large time and length scale mole-
cular dynamics (MD) simulations.

In order to perform an MD simulation, a model of interatomic in-
teraction should be provided. An interatomic potential is, essentially, a
function with a number of parameters fitted to certain reference data.
For example, dislocation motion, diffusion of defects or shock-wave
response, which are typical physical processes in metals, are often
modeled with embedded atom method [1] or angular-dependent po-
tentials [2]. A wide range of biological processes is simulated with the
AMBER [3] and the CHARMM force fields. The ReaxFF [4] potential is
used for the modeling of chemical processes, such as polymerization,
isomerization, and catalysis. On the other hand, the potential energy
surface (PES) could be accurately described by the numerical solution
of Schrodinger’s equation for the system. Density functional theory
(DFT) is one of the approximations of such a model. It is very expensive
for large time and length scale simulation in the context of quantum

molecular dynamics [5].
For this reason, research towards efficient methods that could de-

scribe PES with high accuracy is one of the major directions of modern
computational material science. In particular, machine-learning ap-
proaches have proved themselves to be more flexible [6,7] and to re-
produce PES better than force fields with a certain functional form and
work much faster and scale better than ab initio methods.

Despite the fact that machine learning became a widely-used tool in
all areas of science a long time ago, especially in physics [8] and
chemistry [9], it was applied mostly for specific classification problems,
such as spectra peaks and binding sites of biomolecules recognition
[10,11] or determination of quantitative structure-activity relationships
(QSARs) [12]. Currently, according to this trend, machine learning
started to find new, more profound applications in computational ma-
terial science and chemistry. For example, similar to QSAR and drug
design methodologies, machine learning was utilized as a tool for the
determination of materials structure-properties relationship [13]. Fur-
thermore, machine learning can also be used to obtain accurate in-
teratomic potentials which became the area of intensive research.

One of the first machine-learning techniques applied for interatomic
potential construction was neural networks [14,15]. Recent progress in
this field shows the ability to fit sophisticated potential energy surfaces
of solid water [16] making an emphasis on anharmonic behavior
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reproduction. Another approach is interatomic potentials based on
Gaussian process regression, GAP, proposed in [17]. In several years,
these potentials have been applied to a broad range of physical pro-
blems [6,18,19]. Furthermore, recently they were used to the study of
Si and Zr lattice dynamics [20,21]. However, in [22], authors took only
harmonic part of the vibrational spectrum into consideration. In [20] it
was discussed that GAP potential fitted on the database with the limited
number of near-equilibrium structures is not sufficient for the re-
production of anharmonic behavior of Si. On the other hand, in [16,21]
authors have shown the ability to accurately reproduce anharmonic
behavior of PES, but it required a huge manually constructed training
set of representative structures.

In our work, we have chosen the moment tensor potential (MTP)
first proposed in [23]. The potential functional form is based on de-
scribing the shells of atoms of local atomic environments by their mo-
ments of inertia—hence its name. MTP benefit from the active-learning
algorithm developed in [24,25] that assemble the training set on-the-fly
by adding atomic configurations on which extrapolation is attempted.
Such a combined active-learning and MTP algorithm has been used to
study elastic properties in a multi-principal element alloy [26], diffu-
sion of point defects [27], and chemical reactions [28]. However, it has
not been studied how well MTPs or other machine-learning potentials
reproduce anharmonic effects of lattice dynamics of single-component
systems with different chemistry.

In this paper, we focus on lattice dynamics, as one of the basic
phenomena in solids. The lattice dynamics defines such properties of a
system as vibrational density of states and dispersion curves. We use
MTP to calculate the harmonic and anharmonic behavior of a number
of different single-component systems and compare them to reference
DFT results.

It should be noted that there are several methods that allow one to
obtain vibrational properties from ab initio calculations which vary by
the level of approximation. For example, small-displacement method
and method of self-consistent ab initio lattice dynamics (SCAILD) [29]
use quasi-harmonic model for vibrational band structure calculation.
The effects of anharmonicity can be taken into account by perturbation
corrections [30] and by the method of temperature dependent effective
potential (TDEP) [31,32], to name a few.

An accurate way to calculate the vibrational density of states is
Fourier transform of velocity autocorrelation function [33,34]. This
approach allows one to implicitly take into account anharmonic effects
up to all orders but requires large time and length scales. For this
reason, the construction of the accurate potential with machine-
learning technique is essential for such calculations.

In this work, crystalline of face-centered cubic (fcc) aluminum,
body-centered cubic (bcc) molybdenum, bcc titanium and uranium
phases at finite temperature were investigated. The elements were ex-
plored here, firstly, in the order of anharmonic behavior increasing and
secondly in order of growing complexity of their PES which is an issue
for pure DFT calculation. Aluminum was chosen as an element with
little anharmonic effects in the potential energy surface and relatively
simple electronic structure. Molybdenum and titanium were chosen as
well-studied materials with pronounced anharmonic effects. Uranium
was taken as the material with complex and anharmonic potential en-
ergy surface, which is poorly described by DFT. Moreover, to the au-
thors’ knowledge, the vibrational density of states of the element was
not investigated in previous studies. Furthermore, we emphasize that
bcc-Ti and bcc-U are temperature-stabilized due to strong anharmoni-
city.

For each element its vibrational spectrum was compared with the ab
initio one. For this purpose, TDEP was used. This tool can be applied
both to the ab initio and MTP models and allows one to take into ac-
count anharmonic effects explicitly by the third-order force constants
calculation.

The main goal of the work is to study the accuracy with which MTP
describes the DFT model in the context of phonon and thermodynamic

properties reproduction. We find that for a range of single-component
systems the error between DFT and MTP is less than the error between
DFT and experimental data. We also show that with automatic training
database selection MTP is able to capture the anharmonic effects with
high accuracy. In Section 2 the details of applied interatomic potential
are introduced. In Section 3 the computational details are given. In
Section 4 we present the computations of the phonon properties with
anharmonic effects shown directly by the third-order force constants
calculation. The results are compared to pure DFT calculations in Sec-
tion 4.1. Finally, phonon dispersion curves, vibrational density of
states, the values of entropy and vibrational free energy are presented
in Sections 4.2, 4.2.3 in comparison with existing experimental results.

2. Moment tensor potential (MTP)

In this work, lattice dynamics computations were performed with
the moment tensor potential (MTP). In this model, the total interaction
energy of the structure is presented as a sum of atomic contributions V
(ri). Here ri is the atomic neighborhood encoded in the set of vectors
connecting atom i with the neighboring atoms =rj r, { }i ij . Each con-
tribution rV ( )i is expanded as a linear combination of basis functions

rB ( )ik . Thus, the total energy of a configuration x could be written as

∑ ∑≔
=
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i

N

k
k k
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where N is the number of atoms of the configuration θx, are the ad-
justable parameters to be found by minimizing the difference between
E x( ) and the DFT energy, together with forces and virial stresses, on a
training set of configurations x. The basis functions are constructed as
different contractions of moment tensor descriptors of atomic en-
vironments
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where integers ⩾μ ν, 0 index different descriptors, and ⊗u ν is the
Kronecker product of ν copies of the vector u. This functional form
respects all the physical symmetries. The details can be found in
[23,25].

There are two methodologies for assembling a training set. The first
one is passive learning, the potential is trained using the whole dataset
of structures processed by the reference model. This approach requires
large dataset of reference model (DFT, in our case) calculations in order
to cover the phase space of the system. Learning on-the-fly or active
learning (AL) methodology enables a potential to be automatically
fitted only on those configurations on which significant extrapolation is
detected. In this case, only a few configurations required for the phase
space of the system description are processed by the reference model.
This approach significantly decreases the number of DFT calculations
required for potential training.

3. Details of computation

DFT model implemented in the VASP code [35,36] was used as
reference potential in training procedure and for calculation of DFT
trajectories. Molecular dynamics simulations were performed using the
LAMMPS code [37]. MTP, implemented as a LAMMPS plugin, was used
as an interatomic potential. For the force constants calculations the
TDEP code [31,32] was exploited.

3.1. DFT calculations

DFT calculations were performed as a part of potential training to
obtain reference energies, forces, and stresses. The computations were
done with the projector-augmented wave (PAW) method and by the
means of generalized gradient approximation (GGA) according to the
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parametrization of Perdew, Burke, and Ernzerhof (PBE) for the ex-
change-correlation energy. The cutoff energy chosen for the plane wave
is 320 eV for Al, 300 eV for Mo, 250 eV for Ti and 330 eV for U. The k-
point mesh was × ×4 4 4 ( × ×3 3 3 for U) for the × ×3 3 3 conven-
tional supercell. Moreover, ab initio MD simulations were performed for
the NVT ensemble. The supercell and calculation parameters were
chosen to be the same as in the training procedures.

3.2. Training procedure

Learning on-the-fly was used in the training procedure in order to
minimize the number of DFT calculations. The MD run was performed
for the NVT ensemble during 70000 steps (the time step was 1 fs); the
temperature and lattice constant (a is in Table 1) were chosen the same
as the experimental ones [38–41]. Dependence of the number of ab
initio calculations on the MD run step in double logarithmic scale is
shown in Fig. 1.

It is evident from the figure that on-the-fly training significantly
decreases the number of DFT calculations compared to the passive
learning. The number of configurations requested to be computed by
the ab initio model is approximately 100 for Al, Mo and is around 300
for Ti and U.

The average difference in the potential energy per atom divided by
kT3 and the relative difference in forces between the reference model
and MTP is shown in Table 1. The highest absolute energy error divided
by characteristic thermal vibrational energy of the potential is equal to
1.3%. From this, we can conclude that potential accurately describes
the potential energy surface of the system compared to the reference
model. The maximum error of forces is 27%. This error is large, but
later it will be shown how it influences the second and the third-order
derivatives values. From the difference in the potential energy value, it
could be concluded that our calculations via machine-learning potential
approach reflect well the behavior of the ab initio model.

3.3. TDEP calculation

The TDEP method is used to verify how MTP reproduces force
constants of the system with respect to the DFT calculations. In this
method [31,32], a model Hamiltonian is used to fit the Born-Oppen-
heimer molecular dynamics potential energy surface at finite tem-
perature. The obtained effective potential is applied for the interatomic
force constants (IFCs) calculation. IFCs are then used for the calcula-
tions of the vibrational properties.

To validate the accuracy of the trained potential, an MD run was
performed (20000 steps, one step was 0.5 fs) for the × ×3 3 3 conven-
tional cell. During every 100 steps, the structures for the TDEP fitting
were selected. Furthermore, TDEP was fitted on configurations uni-
formly selected from ab initio MD trajectories (Section 3.1). The cal-
culated vibrational density of states and dispersion curves were com-
pared with each other. The TDEP software also allowed calculating
third-order force constants which are attributed to the finite phonon
lifetime. Using this calculations we computed the broadening and
shifting of the vibrational spectrum for MTP and DFT. Finally, com-
paring the obtained spectrum we can establish that MTPs reproduce
accurately anharmonic effects.

3.4. VACF calculation

Thermodynamic properties such as vibrational entropy and free
energy play a significant role in the determination of system stability at
finite temperatures. These qualities can be calculated directly from the
vibrational density of states. In order to reproduce the vibrational
density of states with anharmonic effects the velocity autocorrelation
function (VACF) method is used. VACF, v t v( ) (0) , can be calculated
explicitly from molecular dynamics simulation. Vibrational density of
states is obtained by the Fourier transform of the VACF [33],

∫=
∞

g ν πνt
v v t

v
dt( ) cos2

(0) ( )
(0)

,
0 2 (3)

where ν is the vibrational frequency, and the average 〈 〉• is taken over
all atoms. The advantage of such a method is its high accuracy in vi-
brational density of states description. On the other hand, to achieve
this accuracy, calculation for large system should be performed, so one
can use ab initio molecular dynamics only for very approximate calcu-
lations [5].

The trained potential was used for the supercell (20×20×20) MD
simulation with periodic boundary conditions in all directions. The
system was equilibrated using MD in the NVT ensemble for 4 ps. After
that, calculations of VACF in the NVE ensemble for another 4 ps were
performed. As shown in [42], the characteristic time of VACF decay in
the considered systems is about 1 ps. Finally, the vibrational density of

Table 1
Average (index avg) difference in potential energy per atom U kT/3 and relative
(index rel) difference in forces F between trained machine-learning potential
and reference model. The error in potential energy of MTPs is small compared
to the DFT model.

Element T, K Lattice type a, Å U kT/3 , %avg F , %rel

Al 775 fcc 4.11 0.1 3
Mo 300 bcc 3.15 0.1 3
Mo 1500 bcc 3.166 0.3 3
Ti 1500 bcc 3.3257 0.6 25
U 1350 bcc 3.49 1.3 27

Fig. 1. Dependence of the number of configurations
processed by DFT on the whole number of structures
in the MD run: 1: passive learning, 2: fcc Al
(T=775 K), 3: bcc Mo (T=300 K and T=1500 K),
4: bcc Ti (T= 1500 K), 5: bcc U (T= 1350 K). We see
that active learning gradually reduces number of
configuration processed by DFT compared to passive
learning.
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states calculation was performed using (3).

4. Results and discussion

4.1. MTP and DFT comparison

As it is known, anharmonic behavior is best captured with in-
creasing temperature. For this reason, high temperature conditions
were chosen for all elements.

4.1.1. Aluminum
The calculated vibrational spectrum for Al at T= 775 K is plotted in

Fig. 2. As it is evident from Fig. 2(a) and (b) that harmonic behavior
reproduces accurately by MTP. Furthermore, Fig. 2(c) and (d) show
clearly that the anharmonic part of the spectrum agrees well when
compared to the DFT model. For example, this fact can be recognized
by looking at anharmonicity in the X point region. Furthermore, this
effect is in correspondence with the broadening of the vibrational
spectrum from 10 to 12 THz. This shows that the MTP potential in the
case of Al reflects the behavior of the DFT model with high accuracy.

4.1.2. Molybdenum
The calculated vibrational spectrum for Mo at T=1500 K is plotted

in Fig. 3. The reference vibrational spectrum of DFT presented in
Fig. 3(c) has small broadening effects. This fact is also evident from the
vibrational spectrum obtained via the machine-learning potential
(Fig. 3(d)). Thus, the results of computations using MTP and DFT are in
good agreement with each other. Broadening of the phonon dispersion
curves and corresponding broadening of vibrational density of states
(Fig. 3(e)) are also captured by MTP with high accuracy.

4.1.3. Titanium
In the present work, the vibrational properties of Ti bcc phase are

also studied. It should be noted that the bcc phase of Ti is not stable at
low temperature. This leads to more complicated lattice dynamics. As a
consequence, the reproduction of bcc Ti behavior is a more challenging
test for MTP. The calculated vibrational spectrum for bcc Ti at
T= 1208 K is plotted in Fig. 4. Phonon dispersion curves calculations
by MTP and DFT are in good agreement with each other. The clear

anharmonic effect is the broadening of the spectrum near the H point
(Fig. 4(c)), which leads to the broadening of vibrational density of
states up to 8 THz (Fig. 4(e)). This feature is well-reproduced by MTP.

4.1.4. Uranium
The study of uranium is a challenging problem due to its compli-

cated potential energy surface and huge anharmonic effects. Also, the
bcc phase of uranium is not stable at a low temperature similar to the Ti
case in Section 4.1.3. The calculated vibrational spectrum for γ -U at
high temperature (T=1113 K) are plotted in Fig. 5. The results ob-
tained with MTP and the ab initio model are in a good agreement with
each other.As it was shown in Section 3.2 the force error of MTP
compared to DFT for Ti and U is larger than for Al and Mo. However,
the anharmonic structure of vibrational spectrum of these elements is in
an excellent agreement (Fig. 4(c), (d), Fig. 5(c), (d)). In particular,
anharmonicity near the P and N points, which leads to the broadening
of the spectrum from 2.5 to 3.5 THz, is well reproduced by MTP. The
huge anharmonic effects clearly seen in the DFT spectrum (Fig. 5)) and
its corresponding plot obtained by MTP (Fig. 5(c)) allow us to conclude
that MTP captures the behavior of DFT with high accuracy.

4.2. MTP and experimental data comparison

In the previous section, we compared the MTP and DFT data. In this
section, we study how MTP reproduces lattice dynamics with respect to
experimental data. The difference between the MTP and experimental
data is compared to the difference between the MTP and DFT data. The
choice of materials’ phases and temperatures was based on the avail-
ability of the experimental data. To the authors’ knowledge, there were
no experiments with the direct measurements of vibrational density of
states for bcc titanium and vibrational spectrum for high-temperature
fcc Al (T=775) and bcc U. For this reason, vibrational density of states
were compared in the cases of Al and U and phonon dispersion curves
in the cases of Mo and Ti. Also, materials’ phases and temperatures
were chosen to explore how MTP reproduces anharmonic behavior with
respect to the experiment. For this reason, Al at high temperature was
studied and materials with anharmonic behavior in the vibrational
spectrum such as Mo, Ti, and U were investigated.

Fig. 2. Vibrational spectrum for fcc aluminum, including the effects of anharmonic phonon broadening and shifting, at 775 K: a, b: phonon dispersion curve and
phonon density of states for MTP and DFT not taking into account the third-order force constants; c, d: vibrational spectrum for MTP and DFT with direct anhar-
monicity described by the third-order force constants; e: vibrational density of states for MTP and DFT with the broadening effect (force constants, vibrational
spectrum and density of states are calculated via TDEP). One can see that the MTP and DFT curves are in perfect correspondence.
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4.2.1. Aluminum and uranium
Vibrational density of states (VDOS) of fcc Al at T = 775 K obtained

via the VACF analysis is plotted in Fig. 6(a) along with the experimental
values of Stedman and Nilsson [43]. The calculated VDOS agrees with
the experimental one. As one can see, not only the position of the peaks
but also the broadening is reproduced by MTP. This is because of a good
description of the vibrational properties of aluminum by DFT. The
obtained results are also in agreement with anharmonicity in the vi-
brational spectrum presented in Fig. 2 c which leads to the broadening
of the density of states up to 12 THz.

In the case of uranium, there were several attempts to investigate its
vibrational spectrum at finite temperature. For example, its band
structure was investigated using a combination of DFT and SCAILD with

full potential linear muffin-tin orbitals model (FPLMTO) [44]. More
recently, this element was investigated using TDEP with PAW [45].
Both approaches TDEP and SCAILD are effective-harmonic models.
Such tools, however, can reproduce anharmonic effects such as
broadening of the spectrum only up to a finite order. In our work, the
computational efficiency of the potential allowed us to obtain the vi-
brational density of states using an MD simulation by analyzing VACF,
which would be infeasible for the pure DFT calculations. The advantage
of this approach is that it properly takes into account anharmonic ef-
fects. The calculated vibrational density of states for bcc U at high
temperature (T =1113 K) and the experimental values from [46] are
plotted in Fig. 6(b).

One can see that the obtained results differ from the experimental

Fig. 3. Vibrational spectrum for bcc molybdenum at 1500 K: a, b: phonon dispersion curve and phonon density of states for MTP and DFT not taking into account the
third-order force constants; c, d: vibrational spectrum for MTP and DFT with direct anharmonicity described by the third-order force constants; e: vibrational density
of states for MTP and DFT with the broadening effect. The plot shows an excellent correspondence between the MTP and DFT curves.

Fig. 4. Vibrational spectrum for bcc titanium at 1208 K: a, b: phonon dispersion curve and phonon density of states for MTP and DFT not taking into account the
third-order force constants; c, d: Vibrational spectrum for MTP and DFT with direct anharmonicity described by the third-order force constants; e: vibrational density
of states for MTP and DFT with the broadening effect. Anharmonic effect near the H point is well-reproduced by MTP.
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data. It is reflected in peak positions and broadening effects. However,
from Fig. 5 it is evident that MTP reproduces DFT with high accuracy.
This means that the DFT model has issues with the description of real
uranium lattice dynamics as it was shown in [44,47,48] and MTP in-
herits such drawbacks being an accurate approximation of the reference
model. Therefore, it could be concluded that in the case of U, MTP
reflects behavior of DFT much better than DFT describes the experi-
ment.

4.2.2. Molybdenum and titanium
The calculated phonon dispersion curves for Mo and the experi-

mental values measured by the means of neutron spectrometry from
[49] are plotted in Fig. 7(a). The dispersion curves were not reproduced
accurately by MTP compared to the experimental data, but the re-
ference DFT model (Fig. 3(a)) establishes a similar problem in the

region that is also shown in [50]. This brings us to the conclusion that
our machine-learning potential reproduces its reference model better
than the reference model describes the experiment.

The calculated phonon dispersion curves for bcc Ti and the ex-
perimental values from [51] are plotted in Fig. 7(b). The difference
between the obtained and experimental results can be viewed as a
drawback of DFT in the description of Ti (Fig. 4(a)). Furthermore,
looking back at Fig. 4(c), one can see that the huge broadening of the
vibrational spectrum near the H point is in agreement with the
broadening of the spectral lines obtained in the scattering experiment
presented in [51].

4.2.3. Free energy calculation
In the previous sections, we have compared the vibrational spec-

trum and vibrational density of states calculated using MTPs with re-
spect to DFT and the experimental data. The next step is to investigate
how the obtained potentials reproduce thermodynamic properties such
as entropy and vibrational free energy. These properties determine the
stability of the structure at finite temperature. In Table 2 the results of
the total entropy STDEP and vibrational free energy Fvib obtained via
TDEP are presented. For such a comparison with the experimental data,
the entropy SVACF was calculated from the vibrational density of states
obtained via VACF. The accuracy of such an approach is discussed in
[34].

The difference in entropy between the trained potential and the
reference model is around −10 2 for Al and Mo, approximately −2·10 2

kB/atom for Ti, and −2·10 1 kB/atom for U. The maximal discrepancy in
entropy with respect to the experimental data is around −9·10 1 kB/atom
for uranium. This error comes from a complex and anharmonic po-
tential energy surface of uranium which leads to inaccuracy of the DFT
model. Furthermore, the results are in agreement with the softening of
the VDOS, presented in Fig. 6. The error for Al, Mo, and Ti is less or of
the order of −10 1 kB/atom which is as large as the difference between
MTP and DFT. The difference in the free energy computation between
the trained potential and the reference model is 0.1% of average thermal
vibrational energy or less for Al, Mo, and Ti, and 7% for U. This values
are comparable to the energy error of MTP with respect to the reference
model. Overall, the error of the MTP data with respect to DFT data is

Fig. 5. Vibrational spectrum for bcc uranium at 1113 K: a, b: phonon dispersion curve and phonon density of states for MTP and DFT not taking into account the
third-order force constants; c, d: vibrational spectrum for MTP and DFT with direct anharmonicity described by the third-order force constants; e: vibrational density
of states for MTP and DFT with the broadening effect. One can see that U has the highest anharmonicity among the investigated materials but MTP is still in a very
good agreement with DFT calculations.

Fig. 6. Vibrational density of states for (a): fcc Al at 775 K and (b): bcc U at
1113 K: Exp: experimental data from [43,46], MTP - VACF: calculations via
VACF using MTP. The plot demonstrates that calculations performed with MTP
reflect the position of the peaks and broadening compared to the experimental
data in Al case. For U, the plot demonstrates that MTP inherits the DFT model
drawbacks in the description of uranium comparing to experimental data.
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much less than the error of DFT with respect to experimental results for
elements with different complexity of PES and anharmonic behavior.
This brings us to the conclusion that MTP has a high accuracy for the
reproduction of the lattice dynamics of single-component systems
compared to the DFT model.

5. Conclusion

In this paper, moment tensor potentials (MTPs) were used to com-
bine the accuracy of ab initio calculations and efficiency of molecular
dynamics. The potentials are constructed based on DFT data.
Furthermore, active learning, used in the training procedure, allowed
us to decrease the number of quantum computations by several orders
of magnitude during the training procedure. Furthermore, the usage of
MTP reduces calculation time compared to VASP by several orders of
magnitude. The CPU time spent on the molecular dynamics step is of
the order of 0.1 ms per atom per core for MTP and does not depend on
the atomic type. For DFT calculations this value ranges between ten and
thousand seconds per atom per core, depending on the atom type.
Scaling of computational complexity with the number of atoms is N for
the MTP potential and between N 2 and N 3 for the VASP calculations. As
a result, calculations using MTP greatly reduce the total calculation
time and allows one to perform large time- and length-scale simulations
without significant loss in accuracy.

In order to estimate the quality of our machine-learning potential,
we explored the lattice dynamics of four elements, Al, Mo, Ti, and U,
with different complexity of the potential energy surfaces and anhar-
monic behavior. The accuracy of MTP with respect to the quantum-
mechanical data was assessed. To study the accuracy, phonon

dispersion curves and phonon density of states of the elements were
obtained with an effective harmonic model. Moreover, the comparison
of anharmonic behavior of MTP and DFT was performed by calculating
the third-order force constants.

Additionally, the results of MTP were compared to the existing ex-
perimental results. This was done in order to have a benchmark that
could be used to quantify the accuracy of MTP with respect to DFT. The
phonon dispersion curves for Mo and Ti and the vibrational density of
states for Al and U were obtained with MTP. The accuracy of the MTPs
with respect to experiment depends on the accuracy of the DFT model:
the error between MTP and DFT is much less than the difference be-
tween MTPs and the experimental data.

Furthermore, the difference in the entropy and vibrational free en-
ergy between the trained potentials and DFT was estimated. Again, this
value was smaller than the error of DFT compared to the experimental
results. Also, this error was lower than the difference of values obtained
with the two methods used in the study, TDEP and VACF analysis.
Moreover, it was shown that the vibrational free energy difference is of
the order of the potential energy error.

To the best of our knowledge, for the first time we have shown that
a machine-learning potential, MTP, was able to take into account an-
harmonicity of the potential energy surface when automatically fitted
on-the-fly on a relatively small number of quantum calculations. The
efficiency of the potential allowed us to perform large MD simulations
reproducing anharmonicity for a number of materials with different
chemistry. Moreover, it was shown that MTP captured the behavior of
the DFT model with higher accuracy than that of DFT as compared to
the experimental data.

The possible field of future research is the study of lattice dynamics

Fig. 7. Phonon dispersion curves along symmetry directions for (a): bcc molybdenum at 300 K; (b): bcc titanium 1208 K: Exp: experimental data from [49,51], MTP –
TDEP: calculations via TDEP using MTP. We attribute the deviation from the experimental data to the quality of the DFT model.

Table 2
Total entropy S, vibrational free energy Fvib and difference in free energy between MTP and DFT denoted as FΔ . The index “DFT” corresponds to calculations using
DFT, the index “TDEP” is related to results obtained via TDEP and the index “EXP” denotes experimental results. One can see that difference in entropy between MTP
and DFT is less (for the Mo case equal) than the difference between the DFT model and experiment.

T, K STDEP
MTP STDEP

DFT , Fvib
MTP, Fvib

DFT F kTΔ 3 , SVACF
MTP SEXP,

kB/atom kB/atom meV/atom meV/atom % kB/atom kB/atom

Al 775 6.251 6.263 −235.2 −235.9 0.1 6.338 6.332
Mo 300 3.750 3.758 −9.03 −9.04 0.1 3.800 3.451
Ti 1208 9.770 9.785 −611.8 −613.3 0.5 9.551 9.041
U 1113 13.249 13.432 −820 −840 7 12.970 11.761
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of multicomponent systems, MTP has shown a good performance on
multicomponent metallic systems [52,26] and promising results on a
system with covalent/ionic bonding [53].
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