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a b s t r a c t

We formulate an atomistic-to-continuum coupling method based on blending atomistic
and continuum forces. Our precise choice of blending mechanism is informed by theoret-
ical predictions. We present a range of numerical experiments studying the accuracy of the
scheme, focusing in particular on its stability. These experiments confirm and extend the
theoretical predictions, and demonstrate a superior accuracy of B-QCF over energy-based
blending schemes.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Atomistic-to-continuum coupling methods (a/c methods) have been proposed to increase the computational efficiency of
atomistic computations involving the interaction between local crystal defects with long-range elastic fields
[7,22,29,40,15,30,6,18]; see [26] for a recent review of a/c coupling methods and their numerical analysis. Energy-based
methods in this class, such as the quasicontinuum model (denoted QCE [41]), exhibit spurious interfacial forces (‘‘ghost
forces’’) even under uniform strain [39,8]. The effect of the ghost force on the error in computing the deformation and
the lattice stability by the QCE approximation has been analyzed in [8,9,31,10], where lattice stability refers to the positive
definiteness of the Hessian matrix of the total potential energy. The development of more accurate energy-based a/c meth-
ods is an ongoing process [40,15,37,38,20,34,5].

An alternative approach to a/c coupling is the force-based quasicontinuum (QCF) approximation [11,12,7,29,25], but the
non-conservative and indefinite equilibrium equations make the iterative solution and the determination of lattice stability
more challenging [13,12,14]. Indeed, it is an open problem whether the (sharp-interface) QCF method is stable in dimension
greater than one. Although some recent results in this direction exist [24], it is still unclear to what extent they can be ex-
tended for general atomistic domains and in the presence of defects.

Many blended a/c coupling methods have been proposed in the literature, e.g., [4,2,23,1,36,16,35,3,42]. In [21], we formu-
lated a blended force-based quasicontinuum (B-QCF) method, similar to the method proposed in [25], which smoothly

0045-7825/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cma.2013.10.007

q This work was supported in part by the NSF PIRE Grant OISE-0967140, DOE Award DE-SC0002085, and AFOSR Award FA9550-12-1-0187. CO was
supported by EPSRC Grant EP/H003096 ‘‘Analysis of atomistic-to-continuum coupling methods.’’
⇑ Corresponding author. Tel.: +1 612 625 6565; fax: +1 612 626 2017.

E-mail addresses: xingjieli@brown.edu (X.H. Li), luskin@umn.edu (M. Luskin), christoph.ortner@warwick.ac.uk (C. Ortner), alexander@shapeev.com
(A.V. Shapeev).

Comput. Methods Appl. Mech. Engrg. 268 (2014) 763–781

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/ locate/cma



Author's personal copy

blends the forces of the atomistic and continuum model instead of the sharp transition in the QCF method. Under the sim-
plifying assumption that deformation is homogeneous, we established sharp conditions under which a linearized B-QCF
operator is positive definite, which effectively guarantees stability of the numerical scheme. Surprisingly, the required blend-
ing width to ensure positive definiteness of the linearized B-QCF operator is asymptotically small (however typical prefactors
in the relative size of the blending region are not predicted by the theory). The one-dimensional theory developed in [21] is
complete and agrees with the numerical experiments. However, the two-dimensional theory was based on a conjecture that
has been proved only in a particular case (see Remark 3.1 for more details) and therefore requires numerical validation.

In the present paper, we present focused numerical experiments to validate and extend the theoretical conclusions in
[21,19]. In particular, we study (i) whether stability of the B-QCF method in 2D can be systematically improved with increas-
ing the blending width, (ii) whether a relatively narrow blending, as suggested by the theory, is enough in practice, and (iii)
whether using the quintic spline (that has the regularity assumed in the theory) has advantages over the cubic spline. In
addition we provide accuracy benchmarks similar to those in [27]. Our numerical benchmarks demonstrate that the
B-QCF scheme is a practical a/c coupling mechanism with performance (accuracy versus computational cost) superior to
energy-based blending schemes.

1.1. Summary

In Section 2, we introduce the B-QCF model for a 1D atomistic chain. We state the asymptotically optimal condition
on the blending size in Theorem 2.1 and apply a uniform expansion to the atomistic chain in subSection 2.2. The crit-
ical strain errors between the atomistic and B-QCF models with different blending size are computed in this subsec-
tion. The numerical results perfectly match the analytic prediction, that is, the errors decay polynomially in terms of
the blending size.

In Section 3, we establish the B-QCF model for a 2D hexagonal lattice. We state sufficient and necessary conditions
on the blending width under which the B-QCF operator is positive definite. To numerically investigate the positive-def-
initeness of the B-QCF operators in 2D, we apply three different classes of deformations to the perfect lattice, which
are the uniform expansion, two types of shear deformation, and a general class of homogeneous deformations. The re-
sults of 2D uniform expansion are similar to those of the 1D example, and they agree with the theoretical conclusions
well.

The stability regions of the different models under homogeneous deformations are consistent with the analytic predic-
tion. By using a small blending region, the 2D B-QCF operator becomes almost as stable as the atomistic model, compared
to the fact that the stability region of the force-based quasicontinuum (QCF) method, i.e., the B-QCF method without blend-
ing region, is a proper subset of the fully atomistic model [13,12,14]. However, the stability error under shear deformation for
the B-QCF operator seems to only depend linearly on the system size, which is observed from the numerical experiments.

In Section 4, we implement the B-QCF method from a practical point of view. We briefly review the accuracy results in
terms of computational cost, i.e., the total number of degrees of freedom DoF, and then include some numerical experiments
for a di-vacancy and microcrack to demonstrate the superior accuracy of B-QCF over other a/c coupling schemes that we
have investigated previously in [27].

2. The B-QCF operator in 1D

2.1. Notation

We denote the scaled reference lattice by �Z :¼ f�‘ : ‘ 2 Zg. We apply a macroscopic strain F > 0 to the lattice, which
yields

yF :¼ F�Z ¼ ðF�‘Þ‘2Z:
The space U of 2N-periodic zero mean displacements u ¼ ðu‘Þ‘2Z from yF is given by

U :¼ u : u‘þ2N ¼ u‘ for ‘ 2 Z; and
XN

‘¼�Nþ1

u‘ ¼ 0

( )

and we thus admit deformations y from the space

YF :¼ fy : y ¼ yF þ u for some u 2 Ug:

We set � ¼ 1=N throughout so that the reference length of the computational cell remains fixed.
We define the discrete differentiation operator, Du, on periodic displacements by

ðDuÞ‘ :¼ u‘ � u‘�1

�
; �1 < ‘ <1:

We note that Duð Þ‘ is also 2N-periodic in ‘ and satisfies the zero mean condition. We will often denote Duð Þ‘ by Du‘. We

then define Dð2Þu
� �

‘
and Dð3Þu

� �
‘

for �1 < ‘ <1 by
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Dð2Þu
� �

‘
:¼ Du‘þ1 � Du‘

�
; Dð3Þu
� �

‘
:¼ Dð2Þu‘ � Dð2Þu‘�1

�
:

To make the formulas more concise, we sometimes denote Du‘ by u0‘;D
ð2Þu‘ by u00‘ , etc., when there is no confusion in the

expressions.
For a displacement u 2 U and its discrete derivatives, we employ the weighted discrete ‘p

� and ‘1� norms by

kuk‘p� :¼ �
XN

‘¼�Nþ1

ju‘jp
 !1=p

for 1 6 p <1; kuk‘1� :¼ max
�Nþ16‘6N

ju‘j

and the weighted inner product for ‘2
� is

hu;wi :¼
XN

‘¼�Nþ1

�u‘w‘:

2.2. The B-QCF operator

We consider a one-dimensional (1D) atomistic chain with periodicity 2N, denoted y 2 YF , under second-neighbor pair
interaction. The total atomistic energy per period of y is given by EaðyÞ � �

PN
‘¼�Nþ1f‘y‘, where

EaðyÞ ¼ �
XN

‘¼�Nþ1

/ðy0‘Þ þ /ðy0‘ þ y0‘�1Þ
� �

ð2:1Þ

for external forces f‘ and a two-body potential / 2 C2ð0;þ1Þ such as the Morse potential given by (2.12). Implicitly we also
assume that /ðrÞ;/0ðrÞ and /00ðrÞ decay rapidly as r increases, so that we only have to take into account first and second
neighbors.

The equilibrium equations are given by the force balance at each atom: Fa
‘ þ f‘ ¼ 0 where

Fa
‘ ðyÞ :¼ �1

�
@EaðyÞ
@y‘

¼ 1
�

/0ðy0‘þ1Þ þ /0ðy0‘þ2 þ y0‘þ1Þ
� �

� /0ðy0‘Þ þ /0ðy0‘ þ y0‘�1Þ
� �� �

: ð2:2Þ

The linearized equilibrium equations about yF are

Lauað Þ‘ ¼ f‘; for ‘ ¼ �N þ 1; . . . ;N;

where Lavð Þ for a displacement v 2 U is given by

Lavð Þ‘ :¼ /00F
�v ‘þ1 þ 2v ‘ � v ‘�1ð Þ

�2 þ /002F
�v‘þ2 þ 2v‘ � v‘�2ð Þ

�2 :

Here and throughout we use the notation /00F :¼ /00ðFÞ and /002F :¼ /00ð2FÞ, where / is the potential in (2.1). We assume that
/00F > 0, which holds for typical pair potentials such as the Lennard–Jones potential under physically relevant deformations.
Appropriate extensions of the stability results in this paper can likely be obtained for more general smooth deformations by
utilizing the more technical formalism developed, for example, in [18,33,32].

The local QC (or Cauchy–Born) approximation (QCL) uses the Cauchy–Born extrapolation rule [41,40], that is, approximat-
ing y0‘ þ y0‘�1 in (2.1) by 2y0‘ in our context. Thus, the QCL energy is given by

EqclðyÞ ¼ �
XN

‘¼�Nþ1

/ðy0‘Þ þ /ð2y0‘Þ
� �

: ð2:3Þ

Then the local continuum forces FqclðyÞ are

Fqcl
‘ ðyÞ :¼ �1

�
@EqclðyÞ
@y‘

¼ 1
�

/0ðy0‘þ1Þ þ 2/0ð2y0‘þ1Þ
� �

� /0ðy0‘Þ þ 2/0ð2y0‘Þ
� �� �

:

We can similarly obtain the linearized QCL equilibrium equations about the uniform deformation

Lqcluqcl
� �

‘
¼ f‘ for ‘ ¼ �N þ 1; . . . ;N;

where the expression of Lqclv
� �

‘
with v 2 U is
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Lqclv
� �

‘
:¼ /00F þ 4/002F

� 	 �v ‘þ1 þ 2v ‘ � v ‘�1ð Þ
�2 :

The blended QCF (B-QCF) operator is obtained through smooth blending of the atomistic and local QC models. Let
b : R! R be a ‘‘smooth’’ and 2-periodic blending function, then we define

Fbqcf
‘ ðyÞ :¼ b‘F

a
‘ ðyÞ þ ð1� b‘ÞFqcl

‘ ðyÞ;

where b‘ :¼ bð�‘Þ. Linearization about yF yields the linearized B-QCF operator

ðLbqcfvÞ‘ :¼ b‘ðLavÞ‘ þ ð1� b‘ÞðLqclvÞ‘:

Next, we define the blending region I of width K:

I :¼ ‘ 2 f�N þ 1; . . . ;Ng : 0 < b‘þj < 1 for some j 2 f0;�1;�2g
� �

; and
K :¼ the cardinality of the set I ;

ð2:4Þ

so that DðjÞb‘ ¼ 0 for all ‘ 2 f�N þ 1; . . . ;Ng n I and j 2 f1;2;3g. Thus K is the size of the compact support of DðjÞb‘. It is obvi-
ous that K < 2N.

2.3. Positive-definiteness of the B-QCF operator

We proved in [21] that the blending function b can be chosen as a quintic polynomial such that.

(i) The jth derivatives of b satisfy

kDðjÞbk‘1 6 CbðKeÞ�j
; for j ¼ 1;2;3: ð2:5Þ

(ii) This estimate is sharp in sense that, if b‘ attains both the values 0 and 1, then

kDðjÞbk‘1 P ðKeÞ�j
; for j ¼ 1;2;3: ð2:6Þ

A linearized operator Lw with w 2 fa; c;bqcfg, is said to be positive definite in the H1 norm or coercive if there exists a
constant c > 0 such that

hLwu;uiP ckDuk2
‘2
e
8u 2 U: ð2:7Þ

We have proved an asymptotically optimal stability condition on the blending region size of the 1D B-QCF operator in
[21].

Theorem 2.1. Let I and K be defined as in (2.4), and suppose that b is chosen to satisfy the upper bound (2.5). Then there exists a
constant C1 ¼ C1ðCbÞ, such that

hLbqcf u;uiP c0 � C1j/002F j K�5=2N1=2
h i� �

kDuk2
‘2�
8u 2 U; ð2:8Þ

where c0 ¼minð/00F ;/
00
F þ 4/002FÞ is the atomistic stability constant.

Moreover, if b‘ takes both the values 0 and 1, then there exist constants C2;C3 > 0, independent of I , N;/00F and /002F , such that

hLbqcf u;ui 6 c0 þ C2 � C3 K�5=2N1=2
h in o

j/002F j
� �

kDuk2
‘2
�

for some u 2 U n f0g: ð2:9Þ
From the conclusion of Theorem 2.1, we can immediately get the following necessary and sufficient conditions on the

blending width K for the operator Lbqcf to be coercive.

Corollary 2.1. Suppose that La is positive-definite and that the blending function is sufficiently smooth. If the blending size K
satisfies K � N1=5, then the B-QCF operator Lbqcf is positive-definite and this estimate is asymptotically optimal.

2.4. 1D uniform expansion experiments

We conduct numerical experiments in order to verify our theoretical findings. More precisely, we compare the decay
rates of the error in critical strain as computed by B-QCF with the theoretically predicted rates as we increase the blending
width K.

We use two kinds of blending functions: a cubic spline

766 X.H. Li et al. / Comput. Methods Appl. Mech. Engrg. 268 (2014) 763–781



Author's personal copy

bB xð Þ ¼
0 x < 0;
�2x3 þ 3x2 0 6 x 6 1;
1 x > 1

8><>: ð2:10Þ

and a quintic spline

BðxÞ ¼
0 x < 0;
6x5 � 15x4 þ 10x3 0 6 x 6 1;
1 x > 1:

8><>: ð2:11Þ

We scale bBðxÞ and BðxÞ and define the blending functions for the atomistic chains as

b̂‘ :¼ bB ‘

K


 �
and �b‘ :¼ B

‘

K


 �
for ‘ ¼ �N þ 1; . . . ;N:

Therefore, atoms with indices from �N þ 1 to 0 belong to the continuum region, from 1 to K � 1 belong to the blending
region, and from K to N belong to the atomistic region. We note that BðxÞ has three bounded derivatives and hence it satisfies
(2.5), whereas for bBðxÞ the second derivative has a jump, hence the third derivative does not exist. Therefore, we expect that
only �b will yield the asymptotically optimal stability estimates for the B-QCF method (see [21]).

For our interaction potential, we use the Morse potential

/ðrÞ ¼ 1� expð�aðr � 1ÞÞ½ �2 ð2:12Þ

and we cut-off the interactions beyond the second nearest neighbor interactions.
We apply a uniform expansion to the atomistic chain: yF :¼ F�Z with Dirichlet boundary condition:

u�Nþ1 ¼ uN ¼ 0: ð2:13Þ

We then compute the critical strains of the atomistic and B-QCF models with different blending size K and fixed N. The
critical strains are defined as

cw :¼max F > 0 : LwðyGÞ is positive definite for all G 2 ½1; FÞ
� �

; ð2:14Þ

where w 2 fa; c;bqcfg denotes the respective model.

Remark 2.1. The stability bounds in Theorem 2.1 hold also for displacements u satisfying a homogeneous Dirichlet
boundary condition. To establish this, we note (1) that the bounds hold for constant displacements as well, and (2) that any
function satisfying (2.13) can be extended to a periodic function (possibly with a nonzero mean). Hence, Corollary 2.1 also
holds for displacements u with homogeneous Dirichlet boundary conditions (2.13).

The computational results are shown in Fig. 1. In Fig. 1(a) we plot the dependence of the errors of quintic blending on K for
different values of a. We see that the graph of the error for the quintic blending is very close to the lower bound K�5=2 as
given by (2.8) in Theorem 2.1. Also, the error is lower for larger a, which is also in accordance with the theoretical results.
Indeed, when a is large, the strength of the next-nearest neighbor interaction, /002F , is small relative to the nearest neighbor
interaction /00F , which contributes to a better stability of B-QCF according to (2.8).

Fig. 1(b) shows the results of comparison of the cubic and the quintic blending. We see that the cubic blending produces
the error that seems to decay slower, like K�2. On the other hand, the quantitative difference between cubic and quintic is not
large on the example considered. To observe a significantly higher accuracy of the quintic spline, the computational domain
size N has to be much larger. In addition, for larger a;N has to be even larger for the quintic blending to have advantage over
the cubic blending.

3. The B-QCF operator in 2D

3.1. The Triangular Lattice

For some integer N 2 N and � :¼ 1=N, we define the scaled 2D triangular lattice L to be

L :¼ A 6Z
2; where A6 :¼ a1; a2½ � :¼ �

1 1=2
0

ffiffiffi
3
p

=2


 �
;

where ai; i ¼ 1;2 are the scaled lattice vectors. Throughout our analysis, we use the following definition of the periodic ref-
erence cell

X :¼ A6ð�N=2;N=2�2 and L :¼ L \X:
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We furthermore set a3 ¼ ð�1=2�;
ffiffiffi
3
p

=2�ÞT, then the set of nearest-neighbor directions is given by

N 1 :¼ f�a1;�a2;�a3g:

The set of next nearest-neighbor directions is given by

N 2 :¼ f�b1;�b2;�b3g; where b1 :¼ a1 þ a2; b2 :¼ a2 þ a3; and b3 ¼ a3 � a1:

We use the notation N :¼ N 1 [ N 2 to denote the directions of the neighboring bonds in the interaction range of each
atom (see Fig. 2).

We identify all lattice functions v : L! R2 with their continuous, piecewise affine interpolants with respect to the canon-
ical triangulation T of R2 with nodes L.

3.2. The atomistic, continuum, and blending regions

Let Hex(R) denote the closed hexagon centered at the origin, with sides aligned with the lattice directions a1; a2; a3, and
diameter 2R. For Ra < Rb < N 2 N, we define the atomistic, blending, and continuum regions, respectively, as

1 10 100 500 1000 2000
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Abs strain error for 1D uniform expansion: N=40000

α=3, γa=0.19721
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N1/2K−5/2*16
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|γ
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cf
−
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Abs strain error for 1D uniform expansion: N=40000, α=3
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quintic spline

10*K−5/2

Fig. 1. (a) The absolute critical strain errors for a 1D uniform expansion. We set N ¼ 40;000;Dc ¼ 1=N2 where Dc is the strain increment used for testing
stability, and ca and cbqcf are the critical strains for the atomistic and B-QCF models, respectively. The dashed line corresponds to the theoretical asymptote.
(b) The absolute critical strain errors of quintic and cubic blending functions with N ¼ 40;000 and a ¼ 3. The solid line corresponds to the theoretical
asymptote.

a1

a2
a3

a4

a5
a6

b1

b2

b3

b4

b5

b6

Fig. 2. (a) The 12 neighboring bonds of each atom. (b) The periodic reference cell L :¼ L \X, the atomistic region Xa :¼ Hexð�RaÞ, and the blending region
Xb :¼ Hexð�RbÞ nXa . Here, N ¼ 32;Ra ¼ 3;Rb ¼ 7, and K ¼ 4.
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Xa :¼ Hexð�RaÞ; Xb :¼ Hexð�RbÞ nXa; and Xc :¼ clos X n Xa [Xbð Þð Þ:

We denote the blending width by K :¼ Rb � Ra. Moreover, we define the corresponding lattice sites

La :¼ L \Xa; Lb :¼ L \Xb; and Lc :¼ L \Xc:

For simplicity, we will again use L as the finite element nodes, that is, every atom is a repatom. For a map v : L! R2 and
bond directions r; s 2 N , we define the finite difference operators

DrvðxÞ :¼ vðxþ rÞ � vðxÞ
�

and DrDsvðxÞ :¼ Dsvðxþ rÞ � DsvðxÞ
�

:

We define the space of all admissible displacements, U , as all discrete functions L! R2 which are X-periodic and satisfy
the mean zero condition on the computational domain:

U :¼ u : L! R2 : uðxÞ is X� periodic and
X
x2L

uðxÞ ¼ 0

( )
:

For a given matrix B 2 R2�2, detðBÞ > 0, we admit deformations y from the space

YB :¼ y : L! R2 : yðxÞ ¼ Bxþ uðxÞ 8x 2 L; for some u 2 U
� �

:

For a displacement u 2 U and its discrete directional derivatives, we employ the weighted discrete ‘2
� and ‘1� norms given

by

kuk‘2
�

:¼ �2
X
x2L
juðxÞj2

 !1=2

; kuk‘1� :¼max
x2L
juðxÞj; and

kDuk‘2
�

:¼ �2
X
x2L

X3

i¼1

jDai
uðxÞj2

 !1=2

:

The inner product associated with ‘2
� is

hu;wi :¼ �2
X
x2L

uðxÞ �wðxÞ:

3.3. The B-QCF operator

The total scaled atomistic energy for a periodic computational cell X is

EaðyÞ ¼ �
2

2

X
x2L

X
r2N

/ðDryðxÞÞ ¼ �2
X
x2L

X3

i¼1

/ðDai
yðxÞÞ þ /ðDbi

yðxÞÞ
� �

; ð3:1Þ

where / 2 C2ðR2Þ, for the sake of simplicity. Typically, one assumes /ðrÞ ¼ uðjrjÞ; the more general form we use gives rise to
a simplified notation; see also [33]. We define /0ðrÞ 2 R2 and /00ðrÞ 2 R2�2 to be, respectively, the gradient and hessian of /.

The equilibrium equations are given by the force balance at each atom,

Faðx; yÞ þ f ðx; yÞ ¼ 0; for x 2 L; ð3:2Þ

where f ðx; yÞ are the external forces and Faðx; yÞ are the atomistic forces (per unit area �2)

Faðx; yÞ :¼ � 1
�2

@EaðyÞ
@yðxÞ ¼ �

1
�

X3

i¼1

/0 Dai
yðxÞ

� 	
þ /0 D�ai

yðxÞ
� 	� �

� 1
�

X3

i¼1

/0 Dbi
yðxÞ

� 	
þ /0 D�bi

yðxÞ
� 	� �

:

Again, since u ¼ y � yB, where yBðxÞ ¼ Bx, is assumed to be small, we linearize the atomistic equilibrium Equation (3.2)
about yB:

Lauað ÞðxÞ ¼ f ðxÞ; for x 2 L;

where Lauð ÞðxÞ, for a displacement u, is given by
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Lauð ÞðxÞ ¼ �
X3

i¼1

/00ðBaiÞDai
Dai

uðx� aiÞ �
X3

i¼1

/00ðBbiÞDbi
Dbi

uðx� biÞ; for x 2 L:

We use the Cauchy–Born extrapolation rule to approximate the nonlocal atomistic model by a local continuum Cauchy–
Born model [41,39,29]. Using the bond density lemma [33, Lemma 3.2 ] (see also [37]), we can write the total QCL energy
(the discretized Cauchy–Born energy) as a sum of the bond density integrals

EcðyÞ ¼ 1
X0

Z
X

X
r2N

/ð@ryÞdx ¼
X
x2L

X
r2N

Z 1

0
/ @ryðxþ trÞð Þdt; ð3:3Þ

where the factor X0 :¼
ffiffiffi
3
p

=2 is the volume of one primitive cell of L and @ryðxÞ :¼ d
dt yðxþ trÞjt¼0 denotes the directional

derivative. We compute the continuum force

Fcðx; yÞ ¼ � 1
�2

@Ec

@yðxÞ

and linearize the force equation about the uniform deformation yB to obtain

Lcucð ÞðxÞ ¼ f ðxÞ; for x 2 L:

To formulate the B-QCF method, we let the blending function bðsÞ : R2 ! ½0;1� be a ‘‘smooth’’, X-periodic function. Then,
the (nonlinear) B-QCF forces are given through a convex combination of Faðx; yÞ and Fcðx; yÞ:

Fbqcfðx; yÞ :¼ bðxÞFaðx; yÞ þ ð1� bðxÞÞFcðx; yÞ

and linearizing the equilibrium equation Fbqcf þ f ¼ 0 about yB yields

ðLbqcf ubqcfÞðxÞ ¼ f ðxÞ; for x 2 L;
where ðLbqcf uÞðxÞ ¼ bðxÞðLauÞðxÞ þ ð1� bðxÞÞðLcuÞðxÞ:

ð3:4Þ

The 2D blending function in our computational experiments will be defined radially using cubic and quintic splines:

b̂ðxÞ :¼ bB �Rb � jxj
�Rb � �Ra


 �
and �bðxÞ :¼ B

�Rb � jxj
�Rb � �Ra


 �
;

where bBðxÞ is given by (2.10) and BðxÞ is given by (2.11). The function �bðxÞ has the smoothness and satisfies 2D versions of the
scaling bounds (2.5) needed for Theorem 3.1 below, whereas b̂ðxÞ does not have a bounded third derivative. We therefore can
expect that b̂ðxÞ will give a larger error asymptotically as compared to �bðxÞ.

3.4. Positivity of the B-QCF operator in 2D

Necessary and sufficient conditions for Lbqcf to be positive-definite are given in [21]. To make this paper more concise, we
only state the conclusions without proof. First, we state a lower bound for hLbqcf u;ui:

Theorem 3.1. Suppose that b 2 C3 and satisfies the scaling bounds (2.5); then,

hLbqcf u;uiP cbqcfkDuk2
‘2
�
;

where

cbqcf :¼ ~c� C K�5=2R1=2
b j logðRb=NÞj1=2

h i
; ð3:5Þ

where C is a generic constant independent of N, and ~c is the coercivity constant for the operator eL:

heLu;ui :¼ hLcu;ui � �4
X3

i¼1

X
x2L

bðx� a2ÞjDai
Daiþ1

uðx� a1 � a2Þj2bi
P ~ckDuk2

‘2
�
8u 2 U:

One can see very clearly that, whenever N is polynomial in Rb and K � R1=5
b , then Lbqcf can be expected to be coercive. Both

are natural and easy to achieve. We can thus deduce the following result for the coercivity of Lbqcf :

Corollary 3.1. Suppose that eL is positive-definite and that the blending function b 2 C3 and satisfies the scaling bounds (2.5). Let
the number of atoms Ra along the radius be of order Na with 0 6 a 6 1. If the blending width K satisfies
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K �
j log Nj1=4

; a ¼ 0;

j log Nj1=5Na=5; 0 < a < 1;

N1=5; a ¼ 1;

8><>:
then the B-QCF operator Lbqcf is positive-definite.

Remark 3.1.

(a) The stability result of Theorem 3.1, and hence of Corollary 3.1, is based on the conjecture that the operator eL is stable.
In [21] we show that eL is indeed stable whenever nearest-neighbor interactions dominate.
Moreover, based on the analysis and numerical experiments in [33] for a similar linearized operator, we expect that the
region of stability for eL is the same as for La as N; Ra; Rb !1. We therefore expect that the result of Theorem 3.1 holds (up
to a controllable error) if coercivity of eL is replaced by coercivity of La in the hypothesis.
(b) One can apply the argument of Remark 2.1 to conclude that the results of Theorem 3.1 and Corollary 3.1 are valid for
homogeneous Dirichlet boundary conditions as well.

By constructing a radial counterexample similar to our 1D counterexample, we can observe that our conditions in Cor-
ollary 3.1 are essentially necessary.

Theorem 3.2. Suppose that La is positive-definite and that the blending function b 2 C3 and satisfies the scaling bounds (2.5). The
number of atoms Ra along the radius is of order Na with 0 < a 6 1. If the blending width K is K � Na=5, then the B-QCF operator
Lbqcf cannot be positive-definite and we can construct a radial counterexample in this case.

We note that there is a gap between the necessary and sufficient conditions for 0 < a < 1. In addition, we have no nec-
essary condition for a ¼ 0, which corresponds to a fixed atomistic core independent of the reference cell X.

3.5. 2D numerical experiments for B-QCF operators

In this subsection, we will continue the numerical experiments for the 2D B-QCF models to verify the theoretical findings
by comparing the decay rates of the error in critical strain as computed by B-QCF with the theoretically predicted rates as we
increase the blending width K.

(1) Uniform expansion.
We first consider the simplest 2D deformation: we apply a uniform expansion yðxÞ ¼ Bx with

B ¼ c
1 0
0 1


 �
;

to the perfect lattice L with Dirichlet boundary condition:

uðxÞ ¼ 0 8x 2 @X: ð3:6Þ

Then we compute the critical strains c of the atomistic and B-QCF models with different blending region width K.
We note that the 2D conclusions also depend on the size of the atomistic region. Therefore we let Ra ¼ K5=3 in order to nar-
row the dependence only to the blending width K. Then the asymptotical term in (3.5) for sufficiently large N is
approximately

K�5=2R1=2
b j logðRb=NÞj1=2 ¼ K�5=2ðRa þ KÞ1=2j logðRb=NÞj1=2 	 K�5=2R1=2

a ¼ K�5=3 ¼ R�1
a ;

which means that the error in cbqcf is systematically improvable.
The choice of scaling Ra ¼ K5=3 is motivated by the results in [17] which indicate that, generically, one should expect an

OðR�1
a Þ error in the regions of stability between the infinite lattice atomistic model and the atomistic model in a domain with

radius Ra. In the computation, we assign integer values for K and use the rounded values for Ra, that is Ra ¼ bK5=3c.
The critical strains are defined as

cw :¼max �c > 0 : LwðBxÞ is positive definite for c 2 ½0; �cÞ
� �

; ð3:7Þ

where w 2 fa;bqcfg denote the models. Here we use the MATLAB function eigs [28] to compute the smallest eigenvalue of
the symmetric part of LwðBxÞ and thus determine the positive-definiteness of LwðBxÞ.

We also define the increment of the strain c in each step by Dc. The results in [33,17,14,10] suggest that the theoretical
increments be of order OðN�2Þ (at least, for finding the critical strain of a uniform lattice), and we set Dc ¼ 10�8 which is suf-
ficiently small considering N ¼ 200 or 300 in our experiments.

We plot the difference of the critical strains with different blending width K in Fig. 3. The numerical critical strain errors
in the left figure approach the analytical asymptote as K increases. There are larger fluctuations of errors as compared to the
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1D case, which is likely due to round-off errors in calculating Ra ¼ K5=3. Thus, the slopes of the errors with quintic blending
agree with the theoretical prediction in Theorem 3.1. Also, similarly to the 1D results, the error is smaller when the nearest
neighbor interaction dominates (that is, when a is large).

Although the slope of the errors with cubic blending seems to be one half order less than that with quintic blending (see
Fig. 3(a)), the computed errors for cubic blending are slightly smaller for the relatively small N considered. We expect that for
a sufficiently large system, the quintic blending would be more accurate. In addition, the 2D errors for uniform expansion are
similar to the 1D results. This is reasonable since the 2D uniform expansion is similar to the 1D deformation.

(2) Uniform shear deformation.
We now investigate stability of B-QCF under shear deformation. We apply a y-directional shear deformation to the hex-
agonal lattice X with Dirichlet boundary conditions (3.6). The y-directional shear is yðxÞ ¼ eBx with

eB ¼ 1 0
c 1


 �
:

The critical strain errors between the B-QCF and atomistic models with the quintic blending are plotted in Fig. 4.
In Fig. 4 we plot the critical strain errors in the following three regimes: (1) N increases, Ra ¼ const;K ¼ const, (2) all three
parameters increase, and (3) N ¼ const;Ra and K increases. The choice of constant parameters, K ¼ 2 and Ra ¼ 14, does not
follow the scaling K 	 R3=5

a , and was made to show that such nonoptimal parameters do not significantly affect the results in
this case. The results indicate that the error in this case depends on N, but does not depend on Ra or K. This means that, for
shear deformations, the local continuum approximation and its finite element coarse-graining contributes most of the error.
We explain such a qualitative difference between the uniform expansion and the shear deformation in the following way. For
the uniform expansion the onset of instability is due to competition of interaction of the nearest neighbors (NNs), contrib-
uting to stability, and the second nearest neighbors (NNNs), contributing to instability. On the other hand, for the shear
deformation the onset of instability is primarily due to competition between elongated and compressed NN bonds. There-
fore, for the uniform expansion it is important to reduce the interface error which distorts the NNN interaction, whereas
in shear deformation the NNN interactions do not contribute significantly to stability errors. Since, for NN interaction, the
atomistic, Cauchy–Born and B-QCF models are identical, the stability error only depends on the domain size.

(3) Regions of stability.
We now combine the uniform expansion and shear deformation together and study the stability region of Lbqcf for a
general class of homogeneous deformations. We consider the following family of deformations which involve shear,
expansion, and compression.

B ¼
1þ s 0:1

0 1þ r


 �
:

Applying these specific homogeneous deformations to the hexagonal lattice in the reference cell and again using the
Dirichlet boundary condition, we plot the stability regions (regions where the operators are positive definite) in Fig. 5.

We observe that the stability regions of the B-QCF model with different blending sizes are all proper subsets of the atom-
istic model. In addition, the fully atomistic and continuum models are very close to each other, which agrees with the
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Fig. 3. (a) The absolute critical strain errors for the 2D uniform expansion. We set N ¼ 500, and we denote the critical strains for the atomistic and B-QCF
models by ca and cbqcf , respectively. The dashed line corresponds to the theoretical asymptote. (b) The absolute critical strain errors for the quintic and cubic
blending functions with N ¼ 500 and a ¼ 3. The solid line corresponds to the theoretical asymptote.
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stability analysis of the perfect lattice [17]. Also, when a increases, which means the next-nearest neighbor interactions
become less important, the difference becomes smaller.
There is a visible difference in the stability regions between the QCF model and the exact atomistic model, whereas the
difference between the B-QCF model and the atomistic model is almost not seen. This implies that using a blending region
can significantly improve the stability properties of the approximation models.

(4) Stability of micro-cracks.
The experiments that we have reported up to this point were based on perfect lattices. Now we apply the B-QCF model to
lattices with local defects. The atomistic system is as follows. There is a micro-crack in the center of the domain X with
length 5, i.e., 5 atoms are removed from the lattice (see Fig. 6). Hence, we redefine accordingly the positions of atoms in

the reference configuration x, the interaction energy Ea, etc. We impose a vertical stretching B ¼ 1 0
0 1þ c


 �
on the lattice

and compute the critical strains cc > 0 beyond which the system loses stability.
We computed the critical strain cc in the following way. Given c > 0, we use Newton’s iteration method to solve the fol-
lowing force equations for yc with the initial guess yF ¼ Bx:

40 80 120 160 200
10

−2.8

10
−2.7

10
−2.6

10
−2.5

10
−2.4

10
−2.3

10
−2.2

Rel error for y−shear with quintic spline: α=4

N

|γ
bq

cf
−

γa |/ γ
a

 

 

K=2, R
a
=14

K=N3/10, R
a
=N1/2

10−1/2N−1

4 5 7 9

10
−2.8

10
−2.7

10
−2.6

R
a

|γ
bq

cf
−

γa |/γ
a

Rel error for y−shear with quintic spline: α=4

 

 

N=200, K=R
a
3/5

10−5N−1

Fig. 4. The relative critical strain error for the y-directional shear deformation. ca and cbqcf are the critical strains for the atomistic and B-QCF models
respectively. For N ¼ 200; ca 	 0:1813. The dashed line corresponds to the theoretical asymptote. The fluctuations in the plotted error for N ¼ const seems
to be due to round-off errors in calculating Ra and K. The method parameters were rounded as follows: in (a) K ¼ bN3=10c and Ra ¼ bN1=2c, and in (b)
K ¼ bR3=5

a c.

Fig. 5. The stability regions of the different models. These closed curves are the boundaries of the stability regions for the atomistic, B-QCF, and the local
continuum models, respectively. The curves with indicators are for QCF.
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Fwðx; ycÞ ¼ 0 for x 2 X n @X:

We set the tolerance for the ‘1� norm of the force residual of the Newton’s iteration to be 10�5. To prevent the configuration from
‘‘jumping out’’ of the local energy well corresponding to the defect under consideration, we require at each step the ‘1� norm of
force residual to be less than 100 and the positive-definiteness of LwðyÞ, where y is the current configuration. If any of the two
requirements is not met, then the current c is regarded as an unstable strain. When the force residual is smaller than the tol-
erance, the configuration y
 is thought to be in its equilibrium of the local energy well. Then we check the positive definiteness
of corresponding operator Lwðy
Þwith the equilibrium configuration y
. The nonlinear critical strain is thus defined as

cc :¼maxf�c > 0 : Lwðy
Þ is positive definite for c 2 ½0; �cÞg:

The plot of critical strain for the B-QCF models are shown in Fig. 7. Even though we choose the blending width K 	 R1=2

slightly smaller then our previous choice (K 	 R3=5), we observe the nonlinear error decays much faster than the theoretical
predicted rates and it can reach the strain increment Dc ¼ 10�8. This phenomenon has been observed in [33] and is likely
related to superconvergence of local quantities of interest. The indicator of the superconvergence is the concentration of
the critical eigenmode corresponding to cc near the defect, which is illustrated in Fig. 8.

We also study the relative errors of the critical strains for two different choices of the blending width, K ¼ 2 and
K 	 R3=5

a þ 2. Motivated by the analysis in [33], the size of the atomistic core is chosen to be Ra ¼
ffiffiffiffi
N
p

. According to Fig. 9,
the relative errors for K 	 R3=5

a þ 2 are approximately 10 times smaller than those for K ¼ 2. But both graphs decay rapidly
as N increases. The rate of decay appears to be quadratic.

Remark 3.2. The numerical computations in this section are conducted without coarsening. The main reason for this was
that coarsening introduces more approximation parameters and potentially more fluctuations in the results. Typically, coars-
ening does not reduce the stability, and we therefore expect that our stability results will remain valid for any coarsening.
Another reason to discard coarsening was to better compare the numerics with the theory. However, the purpose of a/c cou-
pling is to reduce the number of degrees of freedom of an atomistic computation, therefore coarsening is required when
comparing efficiency (i.e., accuracy against the number of degrees of freedom) of different methods.
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Fig. 6. The stable equilibrium configuration of the micro-crack with crack length¼ 5 and c ¼ 0:001, and the ‘1� norm of the force residual is of order
Oð10�12Þ.
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Fig. 7. The nonlinear critical strain error for vertical stretching. We set N ¼ 200, crack length¼ 5, and Ra ¼maxfK2;6g. ca; cbqcf are the critical strains for the
atomistic and B-QCF models, respectively. The dashed line corresponds to the theoretical asymptote.
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4. The Accuracy of B-QCF

In the previous sections, we investigated the positivity of the B-QCF operator. One motivation for this study is that these
experiments fill a gap in our error analysis of the B-QCF method [19]. We now briefly review these results and then include
some numerical experiments demonstrating the superior accuracy of B-QCF over other a/c coupling schemes that we have
investigated previously in [27].
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Fig. 8. The zoomed-in critical eigenvector of critical strain of vertically stretching a micro-crack. We set N ¼ 200, crack length¼ 5, strain increment
Dc ¼ 10�11 and a ¼ 4.
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Fig. 9. The relative errors of the critical strains of vertically stretching a micro-crack in log10 scale plot. We set crack length¼ 5 and a ¼ 4. ca; cbqcf are the
critical strains for the atomistic and B-QCF models, respectively. The dashed line is the theoretical asymptote.
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4.1. Implementation of the B-QCF method

Let V � L be a set of vacancy sites and LV :¼ L n V the corresponding lattice with defects. Let B 2 R2�2 be the applied far-
field strain. We consider the atomistic problem

ya 2 arg min EaðyÞ : y : LV ! R2; yðxÞ � Bx as jnj ! 1
� �

: ð4:1Þ

We remark that one must carefully renormalize Ea in order to rigorously make sense of this problem; see e.g. [19] for the
details. The vacancy sites are accounted for in the definition of Ea by simply removing the relevant pair interactions.

We wish to approximate this problem with a practical variant (i.e., with coarsening) of the B-QCF method. To that end, we
choose Ra;Rb ¼ Ra þ K;N 2 N in such a way that all vacancy sites are contained in the atomistic region Xa, which is a hexagon
with side length Ra. The blending region is defined analogously. The full computational domain is given by X, which is a
hexagon with side length N. We triangulate X in such a way that it matches the canonical triangulation of the triangular
lattice in X.

Let T h denote the set of triangles, let N h denote the nodes of the triangulation, and let N free
h :¼ N h n ðV [ @XÞ denote the

free nodes.
Let P1

h denote the space of all functions vh : X! R2, that are continuous and piecewise affine with respect to the trian-
gulation T h. The space of admissible trial functions is then given by

Yh :¼ yh 2 P1
h : yhðxÞ ¼ Bx for x 2 @X

n o
:

Each deformation yh 2 Yh is understood to be extended by Bx outside of X and thereby gives rise to an admissible atom-
istic configuration.

We define the discretized Cauchy–Born energy functional as

EcðyhÞ :¼
X
T2T h

volðTÞW ryhjTð Þ;

where volðTÞ in 2D is the area of the triangle T. We can define the discretized B-QCF operator, for a given blending function b,
as follows:

Fbqcfðx; yhÞ :¼ ð1� bðxÞÞ@E
aðyÞ

@yðxÞ

����
y¼yh

þ bðxÞ@E
cðzhÞ

@zhðxÞ

����
zh¼yh

for x 2 N free
h :

In the B-QCF method, we aim to find a solution ybqcf
h 2 Yh satisfying

Fbqcfðx; ybqcf
h Þ ¼ 0 8x 2 N free

h : ð4:2Þ

We remark that this method has essentially five approximation parameters that must be chosen carefully: the atomistic re-
gion size Ra, the blending width K, the computational domain size N, the blending function b, and the finite element mesh T h.

4.1.1. Practical considerations
To implement (4.2) in practice, we need to specify further details of the method:

(1) In our choice of blending function, we deviate from the optimal choice of a C2;1-blending function and instead choose
only a C1;1 blending function, which is more easily constructed. This is justified, firstly, by our foregoing numerical exper-
iments which suggest that little additional accuracy in the stability regions can be gained in the pre-asymptotic regime by
using quintic splines (i.e., C2;1-blending), and secondly, because the consistency error does not depend on the regularity of
the blending function.
We choose the blending function proposed in [27], which minimizes kr2bkL2 , or a discrete variant thereof, in a precom-
putation step (see [27] for the details).
(2) In addition to the blending region Xb we ensure that two additional ‘‘layers’’ of atoms outside of it belong to N h. This
makes the implementation of the atomistic force contribution in (4.2) straightforward.
Moreover, we ensure that the vacancy sites do not affect the forces on atoms x where bðxÞ– 0. This ensures that all the
Cauchy–Born force contributions in (4.2) are the correct Cauchy–Born forces.
(3) To obtain an appropriate initial guess for the B-QCF solutions, we first solve the corresponding energy-based blended
QCE method (B-QCE) [27] with the same approximation parameters, using a preconditioned line search method. The
details are described in [27]. The B-QCE solution is then taken as a starting guess for the B-QCF Newton iteration to solve
(4.2). If no B-QCE code is readily available, then a natural alternative would be to implement a damped Newton method
for B-QCF.
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We remark, that the Jacobian matrix of the B-QCF operator is straightforward to assemble from the Hessians of the atom-
istic and Cauchy–Born energy. Nevertheless, for large 3D simulations, more sophisticated solution methods may be
required.
(4) We are now only left to choose the remaining approximation parameters Ra;K;N and the mesh T h.

4.2. Error versus computational cost

We briefly review the main ideas of our analysis in [19] without technical details. A first key result is that if the atomistic
solution is stable (d2EaðyaÞ is positive definite) and the linearized B-QCF operator dFbqcfð�; BxÞ is positive definite, then choos-
ing Ra and K sufficiently large implies that dFbqcfð�; yaÞ is also positive definite, that is, the B-QCF method is stable under these
conditions. To achieve this in practice, we need to choose K3 � Ra (recall from Section 4.1.1 that we have chosen a sub-opti-
mal b).

From this stability result, we can deduce the existence of a B-QCF solution in a neighborhood of the atomistic solution,
and an error estimate in terms of the best approximation error (the best approximation of ya from the finite element space
Yh). and of the modeling error (the force discrepancy of the B-QCF and atomistic models). We estimate the error in the strain
rya �rybqcf

h in terms of the ‘‘smoothness’’ of ya, which is measured in terms of bounds on the derivatives rjya. The deriv-
atives of the discrete functions ya are understood as derivatives of a smooth interpolant. (See [19] for the details.).

Dropping an unimportant term for the sake of readability, our error estimate reads

krya �rybqcf
h kL2ðR2Þ K Cstab Cbkr3yakL2ðR2nxaÞ þ khr

2yakL2ðXnxaÞ þ kryakL2ðR2nxÞ

� �
; ð4:3Þ

where kr3yakL2ðR2nxaÞ measures the modeling error, khr2yakL2ðXnxaÞ the finite element discretization error and kryakL2ðR2nxÞ
the error in the far-field due to the artificial boundary condition (the two latter errors comprise the best approximation er-
ror). The domains xa;x are slightly smaller hexagonal subsets of, respectively, Xa and X, with comparable side lengths.

In addition, Cstab is a stability constant that is uniformly bounded for Ra � K3, and

Cb :¼ K�1=2R1=2
a log jRa=Nj

is a b-dependent prefactor, which arises from a crucial inequality, krðbvÞkL2 6 CbkrvkL2 , in the consistency analysis of
B-QCF.

We choose K 	 Ra and N a polynomial of Ra (we will see momentarily why this is natural), then Cb is uniformly bounded
and in addition, we choose Ra � K3 , which we require for stability. With this choice, it is easy to see that
Cbkr3yakL2ðR2nxaÞ K khr2yakL2ðXnxaÞ (recall that we are working in units where atomic spacing is 1), and hence we can simply
ignore the modeling error term from now on.

We recall from [27] that the atomistic method (ATM) is given by the B-QCF method with b 
 0. We also recall the cor-
responding error estimates (dropping less important terms) for the atomistic (ATM) and the B-QCE methods [19,27]

krya �ryatmkL2ðR2Þ K kryakL2ðR2nxÞ; ð4:4Þ

krya �rybqce
h kL2ðR2Þ K kr2bkL2ðR2nxaÞ þ khr

2yakL2ðXnxaÞ þ kryakL2ðR2nxÞ: ð4:5Þ

To better understand the best approximation error, we need to understand the regularity of ya. Since the problems only
involve defects with zero Burgers vector, it is reasonable to assume based on linear elasticity, that

jrjyaðxÞj � jxj�j�1
:

(We stress that this estimate only applies in the far-field. In the preasymptotic regime different rates of decay might be
observed, e.g., jrjyaðxÞj � jxj1=2�j for the micro-crack case discussed in Section 4.3.2.)

Having this explicit knowledge about the elastic field, we can optimize our choice of finite element triangulation. Using
the construction in [33] and also used successfully in our B-QCE experiments in [27], we obtain a triangulation T h (as a func-
tion of Rb and N), for which the following estimate holds:

khr2yakL2ðXnxaÞ þ kryakL2ðR2nxÞ K R�2
a þ N�1:

Thus, we choose N 	 R2
a to balance these two error contributions.

Finally, we note that, with this construction, the number of degrees of freedom in Yh;DoF :¼ dimYh ¼ 2#N free
h is approx-

imately equal to DoF 	 R2
a . (In particular, the number of degrees of freedom in the atomistic, blending and continuum regions

are comparable.).
In summary, choosing K 	 Ra;N 	 R2

a , the blending function b according to the construction proposed in [27], and the fi-
nite element mesh according to the construction proposed in [33], we obtain from (4.3) the error estimate

krya �rybqcf
h kL2ðR2Þ K DoF�1: ð4:6Þ
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We note that N ¼ Ra in the ATM method, and consequently we obtain from (4.5)

krya �ryatmkL2ðR2Þ K DoF�1=2; ð4:7Þ

thus demonstrating an improved rate of convergence for the B-QCF method in comparison with the ATM method.
We remark that this is optimal for P1-finite element type coarse-graining schemes, as the modeling error is in fact dom-

inated by the finite element error. In particular, it is a substantial improvement over the B-QCE method, for which the cor-
responding error estimate obtained from (4.4) is

krya �rybqce
h kL2ðR2Þ K DoF�1=2:

We note that the B-QCE method can be shown to have a higher rate of convergence than the ATM method for defects with
nonzero Burgers vector (such as dislocations) which have a lower rate of decay. The finite element coarse-graining of the
B-QCE method can more efficiently approximate the larger region where the strain gradient is significant; [19,27] for the
details.

4.3. Numerical rates

We test our analytical predictions against the two numerical examples, for which we already tested the B-QCE method in
[27]. In both examples, we choose the Morse interaction potential

/ðrÞ ¼ 1� expð�aðr � 1ÞÞ½ �2;

with stiffness parameter a ¼ 4.
We compare the B-QCF method with a pure atomistic computation on a finite domain, with the QCE and B-QCE methods

(cf. [27] for a detailed description of these three methods) and with the pure QCF method, which is simply the B-QCF method
with K < 1 (i.e., bðxÞ 2 f0;1g).

Finally, we have also included a highly optimized B-QCE variant where we choose K 	 R2
a and N 	 R4

a , which is a very
unexpected scaling, but yields improved errors in the preasymptotic regime; see [27, Remark 4.3]. We denote this method
by B-QCE+ in the error graphs.

4.3.1. The di-vacancy example
We choose the vacancy set V ¼ f0; e1g and the macroscopic strain

B ¼
1:03 0:3
0:0 1:03


 �
� B0;

where B0 is a minimizer of W (3% uniform stretch and 3% shear from ground state). The setup of the B-QCF method for the
di-vacancy problem is shown in Fig. 10.

In Fig. 11, we plot the degrees of freedom (DoF) against the error in the energy-norm for the various a/c coupling methods
that we consider. As predicted by our analysis, the B-QCF method clearly outperforms all other methods, with the exception
of the QCF method, which is barely distinguishable from the B-QCF method in this graph. Unfortunately, we cannot offer a
satisfactory theory for the QCF method at present.
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Fig. 10. Setup of the B-QCF method for the di-vacancy example, for a specific choice of approximation parameters, shown in deformed equilibrium. The
size/color of the atoms in the center correspond to decreasing values of ð1� bðxÞÞ.
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We also remark that, due to the high consistency error committed in the interface region, the B-QCE does not even out-
perform a plain atomistic computation in this particular example. (But it will clearly outperform the fully atomistic method
(ATM) in the micro-crack example, where the elastic field is much more significant.).

4.3.2. The micro-crack example
In the micro-crack (or void) example, we choose the vacancy set V ¼ f�5e1; . . . ;5e1g and the macroscopic strain

B ¼
1:0 0:03
0:0 1:03


 �
� B0;

where B0 is a minimizer of W (3% tensile stretch and 3% shear from ground state). The setup of the B-QCF method for the
micro-crack problem is shown in Fig. 12.

In Fig. 13 we plot the degrees of freedom (DoF) against the error in the energy-norm, for the various a/c coupling methods
that we consider. In this example the picture is less clear than in the di-vacancy example due to a more significant preas-
ymptotic regime, which is caused by the more significant deformation admitted by the microcrack. In the preasymptotic re-
gime we observe that the QCE and B-QCE methods perform much better than expected, but eventually fall back to the
predicted rates. By contrast, the B-QCF and QCF methods display clear systematic convergence at the predicted rate
throughout.

We also note that, in this example, the B-QCE+ method performs comparable to the B-QCF and QCF methods, at least in
the preasymptotic regime accessible in the experiment.
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Fig. 11. Plots of computational cost (DoF) versus error in the energy-norm for various a/c coupling methods approximating the di-vacancy problem
described in Section 4.3.1.
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Fig. 12. Setup of the B-QCF method for the micro-crack example, for a specific choice of approximation parameters, shown in deformed equilibrium. The
size/color of the atoms in the center correspond to decreasing values of ð1� bðxÞÞ.
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5. Conclusion

We have formulated an atomistic-to-continuum force-based coupling, which we call the blended force-based quasicon-
tinuum (B-QCF) method. In this paper, we numerically studied the stability as well as accuracy of the B-QCF method. We
computed the critical strain errors between the atomistic and B-QCF models with different sizes of the blending region under
different types of deformations.

The main theoretical conclusion in [21] is that the required blending width to ensure coercivity of the linearized B-QCF
operator is surprisingly small. For both 1D and 2D uniform expansion, the computational results of the linearized operators
perfectly match the analytic predictions. In addition, the stability for a general class of homogeneous deformations of the 2D
B-QCF operator becomes almost the same as that of the atomistic model by using a very small blending region, in contrast to
the fact that the stability region of the force-based quasicontinuum (QCF) method, that is, the B-QCF method without blend-
ing region, is just a proper subset of the fully atomistic model. However, the critical strain error for the B-QCF operator ap-
plied to shear deformation seems to only linearly depend on the system size and is thus insensitive to blending width.

For the problem of a microcrack in a two-dimensional crystal, we studied the nonlinear stability of the B-QCF operators.
The critical strain error decays faster than the prediction, and it can be as small as the strain increment. However, we find
that the error increases a little bit when the blending size becomes larger, which is possibly due to round-off error.

Moreover, we implemented a practical version of the B-QCF method. We briefly reviewed the accuracy results in terms of
computational cost [19]. The numerical experiments, di-vacancy and microcrack demonstrate the superior accuracy of B-QCF
over other a/c coupling schemes that we have investigated previously in [27].

The BQCF method with a surprisingly small blending region is an appealing choice for numerical simulations of atomistic
multi-scale problems as it is always consistent and can be guaranteed by both theory and benchmark testing to be positive
definite when the fully atomistic operator is positive definite.
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