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Machine-learning interatomic potentials enable
first-principles multiscale modeling of lattice
thermal conductivity in graphene/borophene
heterostructures†
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One of the ultimate goals of computational modeling in condensed

matter is to be able to accurately compute materials properties with

minimal empirical information. First-principles approaches such as

density functional theory (DFT) provide the best possible accuracy on

electronic properties but they are limited to systems up to a few

hundreds, or at most thousands of atoms. On the other hand, classical

molecular dynamics (CMD) simulations and the finite element method

(FEM) are extensively employed to study larger and more realistic

systems, but conversely depend on empirical information. Here, we

show that machine-learning interatomic potentials (MLIPs) trained over

short ab initio molecular dynamics trajectories enable first-principles

multiscale modeling, in which DFT simulations can be hierarchically

bridged to efficiently simulate macroscopic structures. As a case study,

we analyze the lattice thermal conductivity of coplanar graphene/

borophene heterostructures, recently synthesized experimentally (Sci.

Adv., 2019, 5, eaax6444), for which no viable classical modeling alter-

native is presently available. Our MLIP-based approach can efficiently

predict the lattice thermal conductivity of graphene and borophene

pristine phases, the thermal conductance of complex graphene/

borophene interfaces and subsequently enable the study of effective

thermal transport along the heterostructures at continuum level. This

work highlights that MLIPs can be effectively and conveniently

employed to enable first-principles multiscale modeling via hierarchical

employment of DFT/CMD/FEM simulations, thus expanding the cap-

ability for computational design of novel nanostructures.

From the engineering point of view, numerical modeling is
currently a fundamental aspect of structural design, which not
only substantially reduces the final costs of a product but also
enables the optimization toward the improved performance.
However, before conducting an engineering simulation, materials
properties are ought to be evaluated accurately. In comparison
with conventional materials, experimental techniques for the
characterization of nanomaterials properties are substantially
more complicated, time-consuming and expensive as well. More
importantly, for nanomaterials the experimentally reported
properties may show considerable scatterings, stemming from
diverse sources of uncertainties in the measurements. Like other
engineering products, for the practical application of nanomaterials
in various technologies, developments of accurate modeling
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New concepts
This study highlights that machine-learning interatomic potentials (MLIPs)
trained over ab initio molecular dynamics trajectories enable the design of
an efficient first-principles multiscale modeling, branching density
functional theory with classical molecular dynamics and finite element
simulations. Thanks to such methodology, it becomes possible to examine
the properties and responses of structurally complex microstructures and
assemblies, with the precision of sophisticated first principles calculations,
without paying its corresponding computational cost.
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approaches are critical to facilitate the design and further
optimizations. In recent years theoretical simulations have
played a major role in the astonishing advances in the field
of materials science. In this regard, modeling enables researchers
to examine the stability and explore the properties of novel
materials and structures purely through computer simulations.
Notably, first-principles simulations can already be employed to
find possible synthesis routes for the design of novel materials.1–3

As a recent example, boron nanosheets with different atomic
lattices were epitaxially grown over the silver surface,4,5 a
fabrication process that was originally proposed by the density
functional theory (DFT) simulations.6,7

The main drawback of first-principles DFT calculations is
nonetheless related to their demanding computational cost,
which limits the maximal size of studied systems to only several
hundreds, or at most a few thousand atoms. Moreover, the
computational costs of common DFT simulations normally
scale exponentially with the number of atoms, which jeopardize
the numerical exploration of large and disordered material
models such as the amorphous graphene.8 Classical molecular
dynamics (CMD) simulation is also among the most popular
numerical approaches, and has been extensively employed to
explore the properties of complex nanostructured materials.
Unlike DFT simulations, the computational cost of CMD calculations
scales linearly with the number of atoms, giving access to million-
atom scale modeling. However, the accuracy of CMD results strongly
depends on the precision of the interatomic potentials in describing
energies and forces. As a well-known example, despite the rather
simple bonding mechanism in the planar full-sp2 carbon system,
most of the currently available interatomic potentials cannot
accurately reproduce the thermal conductivity of graphene.
Additionally, for novel materials and structures, it is a challenging
task to find an interatomic potential that maintains structural
stability, irrespective of the accuracy in estimating the basic
mechanical or vibrational properties. It is clear that in comparison
with the DFT counterpart, the computational advantage of MD
simulations comes with the costs of declined accuracy. On the
other side, continuum mechanic based method like the finite
element method (FEM) offer robust solutions to study practical
engineering problems, but in these methods, the properties of the
materials should be fully known prior to launching a simulation. It
is thus conspicuous that for studying the properties and responses
of nanomaterials, the development of multiscale approaches,
solving each method’s drawback, is crucially needed.

The latest advances in the field of machine-learning methods
have offered novel solutions to address critical challenges for a
number of problems, especially in materials science.9–12 For
example, as discussed in numerous studies13–19 machine-learning
techniques are expected to revolutionize the materials discovery
and design. One of the latest advances in this regard, is the use of
machine-learning interatomic potentials (MLIPs) to substantially
enhance the accuracy of CMD simulations. Recently, MLIPs have
been successfully employed to predict novel materials20,21 and
examine lattice dynamics22,23 and thermal conductivity.24,25 As
proven in numerous recent studies,22,24,26 MLIPs enable CMD
simulations to be conducted within the DFT level accuracy for

the computed energies and forces, but with computational costs
scaling linearly with the number of atoms. Another remarkable
advantage of MLIPs is that being derived from DFT simulations,
they can be trained for a specific material composition and are
thus less affected by the flexibility issue of standard CMD
method. Accordingly, MLIPs offer unprecedented possibility to
marry first-principles accuracy with multiscale modeling. To
illustrate such strategy, here we examine the lattice thermal
conductivity of graphene/borophene heterostructures,27 as a
truly challenging system to simulate accurately with conventional
methods. To date, there is no available classical interatomic
potential that can accurately reproduce the structural properties
of borophene and borophene/graphene nanosheets. Moreover,
for a well-studied system like graphene, while the majority of
interatomic potentials provide structural and elastic constants
with a sufficient accuracy, when applied to the calculation of the
lattice thermal conductivity, variation of one order of magnitude is
observed. For the case of graphene, the experimentally measured
thermal conductivities lie in the range 1500–5300 W mK�1,28–31

while CMD based estimates by the original Tersoff,32 AIREBO,33

REBO34 and optimized Tersoff35 give values of 870,36 709,37

35038 and B3000 W mK�1,39,40 respectively. Accordingly it is
evident that the prediction of lattice thermal conductivity using
classical interatomic potential remains a highly challenging task.
In addition, when using CMD simulations to evaluate the inter-
facial thermal conductance, the interatomic potential must exhibit
both high stability and accuracy, otherwise the calculations fail to
simulate the steady-state heat transfer.41–43 Therefore the stability
of simulations is a critical issue for the modeling of graphene/
borophene structures, not only because of their different lattices
but also due to the possibility of formation of diverse types of
defects at their interface.

The main steps within the first-principles hierarchical multi-
scale modeling framework proposed here are summarized in
Fig. 1. This includes four key steps: (1) DFT simulations;
(2) development of MLIPs; (3) CMD simulations and (4) FEM
modeling of effective lattice thermal conductivity. Within the
DFT step, we first conduct the energy minimization of graphene
and borophene lattices. Next, ten different possible grain
boundaries (GBs) between the graphene and borophene lattices
(find Fig. 2a) are studied. Since we conduct the DFT simulations
within the plane-wave approach, the constructed models are
periodic in planar directions, so that it is possible to construct
two different grain boundaries in every DFT interface model (see
Section 2 in the ESI†). To create the required training sets for
the development of MLIPs, ab initio molecular dynamics (AIMD)
simulations are performed. These simulations are carried out
for pristine phases (pure graphene or borophene) and hetero-
structures with geometry optimized interfaces at different
temperatures of 100, 300, 600 and 700 K, each one with less
than 1000 time steps. Since the AIMD trajectories are correlated
within short time periods, only every 10th steps of the original
trajectories are included in the training sets. Next, moment
tensor potentials (MTPs)44 are parameterized to describe the
interatomic interactions. Similarly to classical counterparts,
MTPs also include parameters which are optimized over the
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training configurations provided by the AIMD simulations. In
this work, two types of MTPs are developed, mono-elemental
potentials to simulate the pristine graphene or borophene and
binary potentials for the heterostructure samples. In the latter case,
the created training sets not only include the AIMD trajectories from
the constructed heterostructures but also those from the pristine
graphene and borophene lattices. For the computational efficiency,
MTPs are first trained over subsampled AIMD trajectories. After the
preliminary training of MTPs, the accuracy of the trained potentials
is evaluated over the full AIMD trajectories and the configurations

with high extrapolations grades26 are identified. Such selected
configurations are then added to the original training sets and
the final MTPs developed by retraining the updated clean potentials
over the updated training sets (see Section 1 in the ESI†). After the
MTPs are trained, they are used in the third step to evaluate the
thermal conductivity of pristine phases or calculate the interfacial
thermal conductance of grain boundaries via CMD simulations.
In the last step, the effective lattice thermal conductivity is
evaluated with the FEM method, using the input data provided
by the third step.

Fig. 1 Main steps of the proposed first-principles multiscale modeling framework to simulate the lattice thermal conductivity of graphene/borophene
heterostructures.

Fig. 2 (a) Atomic configurations of constructed graphene/borophene grain boundaries (GB), (b) schematic illustration of non-equilibrium molecular
dynamics (NEMD) method, (c) energy values added to the hot slab and removed from the cold slab by the NVT thermostat during every simulation time
step, (d) established temperature profile showing a sudden drop at the interface (e) estimated interfacial thermal conductance of considered grain
boundaries in panel (a).
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In Fig. 2a, the atomic configurations of ten different graphene/
borophene grain boundaries constructed in this study are
illustrated. In this work, six different graphene and borophene
heterostructure models are constructed, and from those models ten
different grain boundaries are selected for the CMD simulations
(find Fig. S1, ESI†). We remind that from a theoretical point of view,
the grain boundaries in graphene are made from a series of
pentagon/heptagon pairs.45 For the case of MoS2, which also shows
the hexagonal unit cell, according to high-resolution electron
microscopy results, grain boundaries however contain diverse forms
of pentagon–heptagon (5–7), tetragon–tetragon (4–4), tetragon–
hexagon (4–6), tetragon–octagon (4–8) and hexagon–octagon
(6–8) rings.46–48 Because of the different atomic lattices of
borophene and graphene and depending on the various tilting
angles, graphene/borophene grain boundaries show diverse
configurations. From the constructed grain boundaries shown
in Fig. 2a it is clear that they mainly include tetragon, pentagon,
hexagon and octagon dislocations, but nonagon rings may also
form as found in the case of GB-1. Non-equilibrium molecular
dynamics (NEMD) simulations are then performed to access the
interfacial thermal conductance and lattice thermal conductivity
of pristine borophene. To this end we used the LAMMPS49

package along with the trained MTPs to introduce the atomic
interactions. In Table S1 (ESI†), we examine the accuracy of the
trained MTPs for the graphene/borophene interfaces over additional
4 ps of AIMD trajectories at 300 K. Our analysis over the AIMD
testing data reveals that the errors in the absolute energy of the
systems are in the order of a few meV, confirming the high accuracy
of the trained MTPs. In the NEMD approach periodic boundary
conditions are applied along the planar directions using a
simulation time step of 0.5 fs. As shown schematically in
Fig. 2b, to simulate the steady-state heat transfer, we first relax
the structures at room temperature using the Nosé–Hoover
thermostat (NVT) method. Then a few rows of atoms at the
two ends were fixed and the rest of the simulation box is divided
into 22 slabs. Next a temperature difference of 20 K is applied
between the first (hot) and last (cold) slabs. In this process, the
desired temperatures at the two ends are controlled by the NVT
method, while the remaining of the system is simulated without
applying a thermostat. As shown in Fig. 2c for a sample of grain
boundaries, to keep the applied temperature difference at every
simulation time step an amount of energy is added to the hot
slab and another amount of energy is removed from the cold
slab by the NVT thermostat. As can be seen from Fig. 2c, the
amounts of the energy added and removed to the system remain
under control (that show linear patterns), confirming that the
system stays under steady-state heat transfer condition. The
slope of these energy curves can be used to calculate the applied
steady-state heat flux (Hf). As shown in Fig. 2d, due to the
existence of grain boundary, the temperature profile exhibits a
sudden change at the interface (DT). It is noticeable that
temperature gradient within the graphene region is negligible as
compared with the borophene section, suggesting a considerably
higher lattice thermal conductivity of graphene. The grain boundary
thermal conductance can be calculated as Hf/DT. For the pristine
borophene, the temperature profile however illustrates a

constant gradient, which can be used to estimate the thermal
conductivity using the one-dimensional form of the Fourier
law. In Fig. 2e, the calculated interfacial thermal conductance
for the considered grain boundaries are compared. Notably, the
thermal conductances of different grain boundaries are close.
We also examine the length dependence and found that it does
not affect the estimated thermal conductance, in agreement
with a recent study on polycrystalline MoS2

50 and graphene/
h-BN heterostructures.51 These observations reveal that the
interfacial thermal resistance mainly stems from the very
different phonon dispersion relations of graphene and boro-
phene (find Fig. S2, ESI†), in contrast with those of polycrystal-
line sheets in which the misorientation angle of adjacent sheets
and density and type of dislocations cores play the critical
role.50,51 Since the thermal conductance does not show sub-
stantial dependence on the geometries of the formed defects at
graphene/borophene interfaces, it is thus expected that including
more extensive grain boundary configurations should not lead to
considerable changes in the estimated effective lattice thermal
conductivity of heterostructures.

The length effect on the NEMD predictions for the lattice
thermal conductivity of borophene monolayer at room temperature
is plotted in Fig. 3a. Unlike the graphene, borophene shows
anisotropic transport properties and therefore the calculations
are conducted along the armchair and zigzag directions. Sharp
initial increases in the predicted lattice thermal conductivities
by increasing the sample length are observable. This length effect
on the thermal conductivities suppresses at higher lengths and
finally converges and reaches the diffusive heat transfer regime.
As a common approach, the thermal conductivity of borophene
at infinite length, kN, can be calculated by an extrapolation of the
NEMD results for the samples with finite lengths, kL, using the
first-order rational curve fitting via 1/kL = (1 + L/L)/kN,52,53 where
L is the effective phonon mean free path. By assuming the
thickness of 2.9 Å, the diffusive lattice thermal conductivity of
borophene at room temperature along with the armchair and
zigzag directions were estimated to be 52 and 112 W mK�1,
respectively.

Another alternative to calculate the lattice thermal conductivity
is to solve the Boltzmann transport equation. To that end we use
the ShengBTE60 package, which offers a full-iterative solution of
the Boltzmann transport equation to estimate the lattice thermal
conductivity. The computationally demanding section of afore-
mentioned approach is to acquire the third-order (anharmonic)
interatomic force constants, which usually requires a few hundred
or thousand single-point DFT calculations over supercell lattices.
In this work, second and third-order force constants are calculated
using the density functional perturbation theory simulations and
passively trained MTPs, respectively, over 10 � 10 � 1 super-cells
(consisting of 200 atoms). For the evaluation of the third-order
anharmonic interatomic force constants, we consider interactions
up to the eleventh nearest neighbours. In this case, by using the
ShengBTE60 package, we calculate the force constants using the
MTP for 312 structures in a negligible time, which otherwise
with DFT would require significant computational resources.
On the basis of the MTP trained over AIMD simulations within
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the PBE/GGA functional, the diffusive lattice thermal conductivity
of graphene is finally estimated to be 3600 W mK�1, which
falls within the experimentally measured values of 1500–
5300 W mK�1.28–31 In Fig. 3b the cumulative lattice thermal
conductivity of single-layer graphene as a function of mean free
path using the MTP-based solution is compared with the
existing full-DFT calculations, which show close trends. We note
that depending on the type of exchange–correlation functional, as
well as the chosen supercell size and cut-off distance, the
obtained thermal conductivity of graphene varies substantially
which explains the remarkable scattering in the available literature
data. On the basis of PBE/GGA functional and using the ShengBTE
package, the thermal conductivity of monolayer graphene at room
temperature are predicted to be 1936,57 3100,61 3550,62 3845,63

3720,55 328864 and 5500 W mK�1.65 In Table S2 (ESI†), a more
elaborated comparison with different experimental and full-DFT
theoretical works on the thermal conductivity of single-layer
graphene is achieved, which confirms the accuracy of the
accelerated approach in this work. In Fig. 3c the phonon
dispersion relations of graphene predicted by the DFT- and
MTP-based methods show a close agreement (see Section 1.5 of
the ESI,† for computational details). As it is well known, acoustic
phonons are the main heat carriers in the graphene. Fig. 3d
shows the good agreement for the contribution of different
acoustic modes to the overall thermal conductivity of graphene
using the MTP-based approach and full-DFT calculations.56,58,59

In Fig. S3 (ESI†), the contribution of ZA, TA, LA and optical modes
on the phonon’s group velocity, scattering rate and Grüneisen
parameter of single-layer graphene are also illustrated, and again
show consistency with the existing full-DFT results. We further
examine the validity of the proposed MTP-based method in
predicting the lattice thermal conductivity, by considering the
bulk silicon and InAs (see Section 7 of the ESI,† for computational
details). The acquired results shown in Fig. S4 (ESI†) reveal close
agreement between the proposed MTP-based approach and
existing experimental and full-DFT studies. Our results thus

confirm that MTP potentials can be effectively used to estimate
the lattice thermal conductivity, not only by classical NEMD simula-
tions but also with the full-iterative solution of the Boltzmann
transport equation. In the latter case, the MTP-based approach
can yield accurate results but with substantially reduced com-
putational cost of the evaluation of anharmonic interatomic
force constants in comparison with commonly employed DFT-based
solution, which is a highly promising finding.

At this stage, we are capable to explore the effective lattice
thermal conductivity of graphene/borophene heterostructures by
employing the FEM simulations, in which we employ ABAQUS/
Standard along with python scripting. For the construction of
heterostructures, we develop polycrystalline samples made of
5000 individual grains on the basis of Voronoi cells with mirror
symmetry at all edges.66 Different grains are randomly assigned
to be either graphene or borophene, according to the composi-
tion of heterostructures, simply by defining the corresponding
thermal conductivity values acquired in the previous section.
Since the borophene exhibits an anisotropic thermal transport,
for the corresponding cells the anisotropic thermal conductivity
tensors are defined by randomly selecting the orientation. The
NEMD results for the thermal conductance of graphene/borophene
grain boundaries are randomly chosen to introduce the interfacial
conductance of every line connecting dissimilar crystals, and
assuming perfect bonding (infinite conductance) for the rest of
interfaces. To systematically investigate the size effect, we
assume the equivalent grain size of the original polycrystalline
sample as the domain size, assuming a square geometry for the
equivalent average grain size.66 A sample of heterostructure
composition with 60% and 40% content of graphene and
borophene phases, respectively, is shown in Fig. 4a. For the loading
condition, we attach two highly conductive strips to the constructed
sample and apply heat-fluxes (hf) of the same magnitude on the
outer surfaces of the two strips, one inward flux and one outward
flux. As the initial value for the problem, the temperature of the
outer surface of the cold strip (with outward flux) is set to zero.

Fig. 3 (a) NEMD estimations for the length effect on the room temperature lattice thermal conductivity of single-layer borophene along the armchair
and zigzag directions (continuous lines illustrate the fits to the NEMD data points). (b) Cumulative lattice thermal conductivity of graphene at the room
temperature as a function of mean free path by fully iterative solutions of the Boltzmann transport equation using the MTP (present study) and full-DFT
solutions by Fugallo et al.,54 Peng et al.,55 Gao et al.56 and Qin et al.57 with different exchange correlation functions. (c) Phonon dispersion relation of
graphene acquired by the DFT (dotted line) and MTP (continuous line). (d) Contribution of ZA, TA and LA acoustic modes on the total lattice thermal
conductivity of graphene by MTP (present study) and previous studies by Lindsay et al.,58 Gao et al.56 and Qin et al.59
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By solving the steady-state heat transfer problem, as shown in
Fig. 4b a temperature profile establishes along the loading
direction, which can be used to evaluate the effective thermal
conductivity.66 As expected and indeed observed in Fig. 4b–d,
due to the high contrast in thermal conductivity of graphene
and borophene, the temperature and heat flux profiles exhibit
highly non-uniform distributions. This implies that the majority
of heat fluxes are carried out via the percolation networks made
of graphene crystals. To provide a more comprehensive vision on
the heat transfer mechanism, we examine the effective lattice
thermal conductivity for five different heterostructures and for
domain sizes ranging from 1 nm to 100 mm (see Fig. 4e–h). It is
clear that for all samples with extremely large domain sizes
around 100 mm, the effective thermal conductivity is not yet fully
converged, revealing the importance of assuming the interfacial
thermal conductance for the modelling of thermal transport in
these heterostructures. The presented results reveal three main
behaviours of the effective thermal conductivity with respect to
the domain size. Then first one occurring for domain sizes below
10 nm, the lattice thermal conductivity stays almost insensitive
with respect to the domain size. This observation reveals that due
to the presence of interfacial resistances, the embedded phases
basically do not contribute to the heat flux transfer and exhibit a
void like behaviour. This issue is noticeable when comparing the
thermal conductivity of heterostructures with 10% and 20%
content of graphene nanosheets (find Fig. 4h), in which the
sample with the higher content of the ultrahigh conductive
crystals yields lower conductivity for domain sizes lower than
100 nm. The second type of behaviour occurs for domain sizes
from 10 nm to 10 mm, in which the thermal conductivity slowly
increases with domain size. Such a trend implies that the effect of

interfacial resistance starts to decline by increasing the domain
size. If one considers for instance the sample with 10% content of
borophene with a relatively large domain size of 250 nm, as seen
in Fig. 4c, the borophene crystal contributes marginally to the
heat flux transfer. For the sample with 40% content of boro-
phene, it is noticeable that the majority of heat flux is transferred
by graphene networks percolating each other (find Fig. 4d). In
this case, borophene crystals not only participate marginally in
the heat transfer but also impede thermal transport within the
highly conductive graphene grains. In the third and last step,
which dominates the thermal transport for domain sizes larger
than 10 mm, the thermal conductivity reaches a plateau and only
slightly increases by a further increase of the domain size, which
reveals that the effect of interfacial resistance starts to vanish.
From a practical point of view, this second step of heat transfer
would be more close to real experimental samples, because it is
normally very difficult to make heterostructures with domain
sizes larger than 0.01 cm. Our results for domain sizes from
10 nm to 10 mm highlight that within these domain sizes, the
interfacial thermal resistance plays the critical role and therefore
should be taken into consideration. We would like to also clearly
remind that in this study we mainly studied the lattice thermal
conductivity, which may not be exactly the same as the total
thermal conductivity, in which electrons contributions to the
thermal conductivity are also taken into account.

Conclusion

In conclusion, our study confirms that machine-learning
interatomic potentials trained over short ab initio molecular

Fig. 4 (a) A samples of constructed continuum model of graphene/borophene heterostructure with 40% content of borophene crystals to evaluate the
effective lattice thermal conductivity of polycrystalline graphene structures, (b) established steady-state temperature profile for the same sample with
domain sizes of 10 nm. (c and d) Samples of heat flux distributions. (e–h) Normalized effective lattice thermal conductivity of heterostructure with respect
to the graphene’s thermal conductivity.
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dynamics trajectories enable efficient first-principles multiscale
modeling via hierarchical employment of density functional
theory/classical molecular dynamics/finite element simulations. In
other words, it is possible to examine the properties and responses
of novel complex microstructures, without prior knowledge of
properties of building blocks. To show this novel possibility, we
explored the lattice thermal conductivity of graphene/borophene
heterostructures, a system that to the best of our knowledge there
exist no viable classical modeling alternative. Furthermore, it is
shown that the developed machine-learning interatomic potentials
can be effectively employed to acquire the lattice thermal
conductivity not only by classical molecular dynamics simulations
but also with the full-iterative solution of the Boltzmann transport
equation. First-principles multiscale modeling is believed to offer
novel and computationally efficient possibilities to evaluate the
properties and improve the design of advanced nanostructured
materials.

Methods

First-principles DFT calculations in this work were carried out
using the Vienna Ab initio Simulation Package (VASP).67–69 The
generalized gradient approximation (GGA) and Perdew–Burke–Ern-
zerhof (PBE)70 functional was adopted in the calculations. We
assumed a plane-wave cutoff energy of 500 eV in our simulations.
The phonon dispersion and second-order force constants of gra-
phene were obtained by density functional perturbation theory
(DFPT) simulations over a 10 � 10 � 1 supercell sample using a
3 � 3 � 1 Monkhorst-Pack71 k-point grid along with the PHONOPY
code.72 Ab initio molecular dynamics (AIMD) simulations were
performed with a time step of 1 fs using a 3 � 3 � 1 k-point gird.
For elaborated computational details, please refer to the supporting
information document and the public Mendeley dataset of http://dx.
doi.org/10.17632/pbgscy3ptg.1.
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