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A recently proposed class of machine-learning interatomic potentials—Moment tensor potentials (MTPs)—is
investigated in this work. MTPs are able to actively select configurations and parametrize the potential on-the-
fly. It is shown that MTPs accurately reproduce energies, forces and stresses calculated ab initio. As a more
comprehensive test, MTPs are employed to calculate vacancy diffusion rates in Al, Mo and Si. We demonstrate
that the results are in a good agreement with ab initio data for the materials considered.

1. Introduction

Molecular dynamics (MD) has proved itself as a useful and often
irreplaceable tool for various areas of research, such as materials sci-
ence, chemistry and biology. The core of this method is the employed
model of interatomic interactions, it determines a delicate balance be-
tween computational cost of the simulation and the fidelity of the re-
sults.

One of the most accurate description of interatomic interactions is
provided by quantum-mechanical models, such as density functional
theory (DFT). However, applicability of DFT is limited to modelling of
several hundreds of atoms at sub-nanosecond time intervals. Atomistic
simulations at larger time and space scales are often performed with
semi-empirical interatomic potentials. Such a potential has a pre-de-
fined functional form and a number of adjustable parameters. The
parameters are fitted to DFT (and sometimes experimental) data in
order to describe a particular material. This technique is computa-
tionally efficient, but often yields only qualitative results.

There is a number of approaches that aim to develop models with
intermediate characteristics: less computationally intensive than DFT,
but also more accurate than semi-empirical potentials. One of the ap-
proaches is machine-learning interatomic potentials (MLIPs). On one
hand, they inherit some general approximations typical for semi-em-
pirical potentials, e.g. they are local and energy of the system is re-
presented as a sum of atomic contributions. This enables computational
efficiency of the model. On the other hand, MLIPs have very flexible
functional form that allows one to achieve more accurate description of
interatomic interactions.
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High accuracy along with affordable computational cost makes
MLIPs a promising tool for materials modeling. Moreover, some MLIPs
are able to actively learn on-the-fly, in other words, the potential is
automatically re-fitted in order to account for new configurations when
substantial extrapolation is detected. This feature is very attractive for
investigation of rare events, e.g. diffusion at fairly low temperatures. In
this case, the system spends most of the time in the same area of the
phase space. Therefore, instead of performing a lot of DFT calculations
of similar states, it is more efficient to parametrize the local potential
landscape with an MLIP. Moreover, when the transition event even-
tually occurs, an MLIP is expected to detect extrapolation and invoke a
DFT code.

Though the active learning techniques are expected to improve the
robustness and transferability of MLIPs, the machine-learning poten-
tials should still be used with more care than their semi-empirical
counterparts. Indeed, MLIPs are a new class of potentials and their
pitfalls and limitations are not fully identified yet. In this work, we
examine the moment tensor potentials (MTPs)—a recently proposed
class of MLIPs [1]. We access applicability of MTPs to simulation of rare
events on the example of vacancy-driven diffusion in aluminum, mo-
lybdenum and silicon. Different materials with significantly divergent
properties are intentionally selected in order to provide a comprehen-
sive picture.

The paper has the following structure. The concept of MTPs and
calculation details are discussed in the Methods section. The first part of
the Results and Discussion section is dedicated to the investigation of
the effect of internal parameters on the quality of MTPs. Then the ac-
curacy of MTPs is compared with that of semi-empirical potentials.
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Subsequently, MTPs are employed to calculate vacancy diffusion rates
in Al, Mo and Si. The results are discussed and compared with the ex-
isting data in the final part of the paper.

2. Methods

Moment tensor potentials are briefly discussed in the first part of
this section, while the second part is dedicated to the details of DFT
calculations.

2.1. Moment tensor potentials

Like the absolute majority of interatomic potentials, MTP implies
that the total interaction energy of a configuration can be represented
as a sum of atomic contributions. The contribution from atom i can be
defined as V(r;), where V is the interatomic potential and
r; = (11, ...1) is a collection of vectors pointing from the atom i to its
neighbors inside the potential cut-off. MTP then postulates linear re-
presentation of each of the atomic contributions V (r;):

V() =, 6B,

j=1

@

where 6; are adjustable parameters, B; are pre-defined basis functions
and m is the number of functions in the basis. Functional form of B; and
other details on how the basis is constructed can be found in [1,2]. The
total energy of the system is then given by the sum of V (r;) over all
atoms:
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where N is the number of atoms in the configuration x. The force acting
on j-th atom fj(x) is determined as a derivative of E (x) with respect to
the atom position x;:

fj(x) = —ijE(x).

i
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Likewise, the virial stresses can be found as derivatives of E(x) with
respect to the lattice vectors L:

L B

70 = D)l
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From Eq. (1)-(4) it follows that the energy, forces and stresses for a
given configuration are determined by the set of basis functions, and
the values of the adjustable parameters 6;. These parameters are found
through the fitting to the results of DFT calculations. Imagine that the
calculations were performed for a collection of configurations Xrg,
which we denote as the training set. For each x; in X5, we know the
“exact” energy (EP'T(x;)), per-atom forces ( ijF T(x))) and the compo-
nents of the stress tensor (5" (x;)). Therefore, the MTP energy error for
x; is given by:

AE (x;) = |E(x;) — EPFT (x;)I. ()

The errors of forces and stresses are defined in a way similar to Eq. 5.
Then the values of §; can be found through minimization of the func-
tional:

N
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(6)

Note that the energy, force and stress terms in Eq. (6) are weighted by
Cg, Cr and C;, respectively. The weigh factors allow one to determine
the relative importance of energies, forces and stresses during the fitting
routine. Further, we denote these parameters as the fitting weights.
Beside the fitting options, the quality of MLIPs is known to be
sensitive to the nature of configurations included in the training set.
The optimal training set should cover the whole phase space of the
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system without significant “gaps”, since high flexibility of MLIPs limits
their ability to accurately extrapolate. The process of fitting the po-
tential on an optimized training set is called active learning. MTPs are
able to actively learn either from a given database or from a stream of
configurations. The latter case is especially practical, since the stream of
configurations can be generated on-the-fly during an MD simulation.
We next discuss this scenario in more details.

Imagine that an MTP is employed to calculate an MD trajectory in
the active learning on-the-fly regime. Then, in addition to the calcula-
tion of forces, the potential will estimate the degree of extrapolation at
every step of the simulation. If the degree of extrapolation exceeds the
user-defined threshold, the corresponding configuration is auto-
matically processed by the DFT code. Next, the processed configuration
is added to the optimized training set, the MTP is re-fitted to account for
the update, and the simulation continues. We do not give mathemati-
cally strict formulation of the selection algorithm employed by MTP for
the sake of brevity, however all the necessary details can be found in
[2].

In this paper, we discuss the selection process from a practical
standpoint. MTP is able to select configurations for the training set
based on several features: per-atom energy (V (r;)), energy of a con-
figuration (E(xi)), forces (f(x)) and stresses (g;(xx)). The corre-
sponding selection strategies are called selection by neighbors, en-
ergies, forces or stresses, respectively. The strategies could be used
simultaneously, similarly to how different quantities are used in the
fitting routine (Eq. (6)). Similarly to the case of fitting, the selection
process is characterized by the set of weights, one per every strategy.
The weight determines the relative importance of the corresponding
strategy in the selection process. For a given set of weights, the number
of selected configurations is controlled by a threshold value. The
threshold determines the allowed degree of extrapolation. If the
threshold is exceeded, the configuration is added to the optimized
training set. A decrease of the threshold leads to an increase in the
number of selected configurations.

To sum up, the parametrization of MTPs includes the following
steps:

o First of all, an optimized training set should be selected from a given
database of configurations (or from MD trajectory on-the-fly). The
selection process is governed by a threshold and four selection
weights: neighbor, energy, force and stress.

e Then the potential is fitted to the training set. The fitting process is
controlled by three fitting weights: energy, force and stress.

The effect of the fitting weights and selection parameters will be
discussed in details in Section 3.

2.2. DFT calculations

Like many other interatomic potentials, MTPs are fitted to the re-
sults of quantum-mechanical calculations in the framework of density
functional theory (DFT). DFT calculations were performed using the
VASP code [3]. We employed projector augmented wave potentials
[4,5] generated with Perdew, Burke and Ernzerhof generalized gradient
approximation [6]. 3, 4 and 6 electrons were treated as valence (out-of-
core) states for Al, Si and Mo, respectively. The plain wave basis cutoff
(E.) and the number of k-points were determined based on con-
vergence tests for energies and forces. The tests indicated that the E,
of 300 eV is sufficient for Al, and 400 eV for Mo and Si. In addition, the
tests suggested that 3 X 3 X 3 k-mesh is required for all of the materials.

Note that Al Si and Mo have different lattice symmetries: FCC,
diamond and BCC, respectively. Atoms were placed in computational
cells in order to form appropriate lattice, a vacancy was also created in
each of the cells. As a result, they contained 107, 63 and 53 atoms for
Al, Si and Mo, respectively. Temperature-dependent lattice parameters
were adopted from the X-ray experiments [7-9].
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Databases of DFT configurations were required in order to select a
set of optimal internal parameters of MTP. Equilibrium quantum MD
trajectories were calculated for this purpose. Each of them contains
2-10* frames generated with a timestep of 1 fs. Temperature during the
MD runs was maintained at 0.9 T, by means of the Nosé thermostat.
More specifically, the dynamics of Al, Si and Mo was simulated at 850,
1650 and 2600 K, respectively.

2.3. Calculation of diffusion coefficients

MTP was employed to calculate the vacancy diffusion coefficients in
Al, Si and Mo. If not stated otherwise, this was done in the following
way. A separate MTP is parametrized for every temperature in-
vestigated. At a particular temperature, MTP potential is fitted via the
active learning on-the-fly algorithm, the fitting weights are 100, 10 and
1 for energy, force and stress, respectively. The selection of configura-
tions is based on neighbors and forces, the corresponding weights are 1
and 10, accordingly. The length of the learning trajectory is 10° steps,
the timestep, as usual, is 1 fs.

Consequently, the learning is switched off and the obtained poten-
tial is employed to conduct four independent MD runs, 5-10° steps each.
The vacancy diffusion coefficients are then calculated for each of the
runs in accordance with the Einstein-Smoluchowski relation. Several
runs are performed in order to obtain better statistics. The number of
runs was increased up to 16, if the standard deviation of the obtained
diffusivities was larger than 50 %. This is usually the case for low
temperatures. Vacancy contribution to self-diffusion is then calculated
in a standard way:

Dself = fD\; Cy (T)’ )

where f is the correlation factor which equals to 0.7815, 0.7215 and 0.5
for Al, Mo and Si, respectively [10,11]; D, is the vacancy diffusion
coefficient; ¢, (T) is the temperature-dependent vacancy concentration.
Vacancy concentrations that account for anharmonic effects were
adopted from [12] (Al) and [13] (Mo). Considering Si, only an Ar-
rhenius interpolation of c,(T) is available in the literature, hence we
used the parameters determined in [14].

3. Results and discussion

MTP is a relatively new class of machine-learning interatomic po-
tentials. Therefore, it is interesting to test its ability to reproduce DFT
data at first. Below, we consider energy, force and stress errors in order
to obtain a comprehensive picture. As discussed in the Methods section,
MTP has several internal parameters. Three of them (fitting weights)
control the parametrization process, and five other options (threshold
and four weights) govern the selection of the training set from a data-
base of configurations. Let us consider the fitting weights first.

3.1. Effect of MTP fitting weights

A natural way to assess the effect of fitting weights is to train MTP
potentials with different weight sets and compare their accuracy
afterwards. To that end, train and test datasets are required. The da-
tasets were generated by random selection of 2000 unique configura-
tions out of 20 ps MD trajectory (see Methods for details). 64 pairs of
non-overlapping train and check datasets were generated this way in
order to guarantee statistical reliability of the results.

The data is plotted on Fig. 1, standard deviations of the values are
indicated with error bars. The figure contains six plots: mean and
maximum absolute errors of energies, forces and stresses. The con-
sidered fitting weights are indicated on the X-axis on each of the plots in
the following notation: “energy weight” — “force weight” — “stress
weight”. For example “100-10-1” means that the energy weight equals
to 100, the force—to 10 and the stress—to 1.

Each of the plots on Fig. 1 (except for one, see the caption)

48

Computational Materials Science 164 (2019) 46-56

demonstrates the results for molybdenum, silicon and aluminum. Note
that the accuracy of MTP strongly depends on the material investigated.
Hence, the errors were remapped to the range from 0 to 100 in order to
facilitate the comparison. The minimal and maximal values of the er-
rors are given in legends. Looking at these values, one can see that the
variations of energy and force errors are typically in the range from 10
to 30 %. For example, the minimal mean energy error for Mo is
4.5 meV/atom, while the maximal one is 5.0 meV/atom. The changes of
stress errors are slightly more pronounced, but still within a factor of
two. Nevertheless, even a 10% improvement could be important in
some cases, therefore we will have a closer look at mean absolute er-
rors.

One can see from the left column of Fig. 1 that the effect of fitting
weights on mean-absolute errors is similar for all of the materials. In
particular, high value of the stress weight, as expected, decreases the
stress error. However, it also makes energy and force errors grow.
Compare the sets “1-1-1” and “1-1-10”, or “1-10-1” and “10-100-1” for
example. Interestingly, this tendency is not observed for mean energy
errors. Note that the error is higher for the “10-1-1” set (at least for Mo
and Al) than for the “100-10-1” or “1-10-1”. Hence, accurate descrip-
tion of energy requires the force weight to be significantly higher than
the stress weight.

It should be pointed out that accurate description of forces and
energies has higher priority, since the potential will be employed to
perform MD simulations. Consequently, “1-10-1” and “100-10-1” are
good candidates for the optimal fitting weights. Note that we do not
consider “10-100-1” here, because it maximizes the stress error without
significant gain in accuracy of energies or forces.

As can be seen from the right column of Fig. 1the maximum abso-
lute errors demonstrate the same features as mean absolute errors.
However, standard deviation of maximum errors is much larger than
that of the mean errors. This effect is especially pronounced for mo-
lybdenum force errors. Their standard deviation is approximately
8.4eV/A, while the mean values vary from 7.8 to 8.4 eV/A. Therefore,
looking at the error bars on Fig. 1, one can conclude that fitting weights
have no appreciable effect on maximum absolute errors of forces and
energies. Regarding stresses, the errors behave similarly to the mean
absolute errors.

In summary, we analyzed the effect of fitting weights on the accu-
racy of MTP potentials. The obtained results suggest that the weight sets
of “1-10-1” and “100-10-1” yield the most accurate MTP. In order to
choose between the sets, it should be noted that each DFT calculation
yields only one energy, but three force components per every atom in
the system. Therefore, it seems better to keep the energy weight larger
than the force weight to avoid force overfitting. That is why we will
employ the “100-10-1” set in future, albeit no signs of overfitting were
observed in the tests.

3.2. Effect of MTP selection weights

Now, when the optimal values of fitting weights are established, it is
appropriate to consider the effect of a selection strategy on the quality
of MTP. By quality we mean not only accuracy, but also predictive
power of the potential. Therefore, ten-fold cross-validation was em-
ployed instead of random sampling in this case. In other words, the
whole trajectory (2-10* steps) was split into 10 even parts. Then nine of
the parts were used for selection and training, and the remaining part
was employed for estimation of errors (the test set). Note that because
in the 10-fold cross-validation there are 10 different train sets, the
whole select-train-check loop was performed 10 times. These data is
then used to compute the average and the standard deviation of the test
error across the iterations.

One the most important characteristics of the selection process is the
number of selected configurations (IN;), especially in the learning on-
the-fly scenario. In this case, each of the selected configurations is
processed by the DFT code, hence the N; strongly affects the
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Fig. 1. MTP errors for energies (first row), forces (second row) and stresses (third row) for various fit weights. Left column: relative mean absolute errors, right
column: relative maximum absolute errors. The numbers in legends indicate min and max values for all of the weights considered. Y-axis units are chosen in order to
remap errors to the range from O to 100. Max abs. error for molybdenum forces is not shown due to large statistical uncertainty (over 10 times), corresponding

average value remains between 7.8 and 8.4 eV/A.

computational cost of MTP parametrization. Therefore, it is important
to determine the dependence of the MTP error on N; from a practical
standpoint. Similarly, the comparison of a two selection strategies is
practical only if the corresponding N; are close to each other. Following
these considerations, MTP errors are plotted on Fig. 2 as functions of N;.

Each point on Fig. 2 is obtained for an MTP that was actively trained
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using a particular selection strategy (specified in the legend). Energy,
force and stress errors are considered, like in the case of study of the
fitting weights effect. One can see from the figure that the mean energy
errors are slightly lower for the random selection than for the other
strategies. However, this effect is within one sigma for all of the con-
sidered N;. The difference of maximum energy errors is also within the
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Fig. 2. MTP errors for energies (first row), forces (second row) and stresses (third row) in molybdenum for various fit weights. Left column: mean absolute errors,
right: maximum absolute errors. For every data series, the solid line provides visual guidance and the dashed lines indicate one-sigma confidence intervals. Note that
the confidence intervals exceed the plot ranges for several points, corresponding standard deviations are indicated by numeric labels in these cases.

standard deviation for various selection strategies. Nevertheless, it can
be clearly seen from Fig. 2 that selection by neighbors or by forces
allows one to significantly reduce the deviations of maximum errors.
The effect is more pronounced at low N;.

The same tendencies are observed for force errors on Fig. 2. In
particular, the neighbor and the force selection strategies demonstrate
higher mean absolute errors with respect to random selection. At the
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same time, both of the strategies significantly reduce the standard de-
viation of maximum absolute errors (also with respect to random se-
lection), especially when the numbers of selected configurations is low.
Regarding the stress errors, the neighbor and the force selection stra-
tegies yield lower mean values of the mean error and, at the same time,
lower standard deviations of the maximum error.

Another important feature depicted on Fig. 2 is that the mean force
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and stress errors decrease, while the number of selected configurations
increases from 20 to 100-200, and then levels out. Consequently,
around 200 configurations should be selected in order to optimally
parametrize an MTP. These values correspond to selection thresholds in
the range of 1.5-1.2 for the neighbor and the force selection strategies.
However, we will employ the threshold of 1.1 in what follows in order
to guarantee the highest accuracy.

To sum up, it is demonstrated on Fig. 2 that the neighbor and force
selection strategies allow us to minimize the maximum absolute errors
(of energies, forces and stresses) and their standard deviations at the
price of a slight increase in mean absolute errors. Therefore, both of the
strategies will be used below for selection of optimized training sets.
Corresponding selection weights are: neighbor 1; energy 0; force 10;
stress 0. The weight of forces is significantly larger than that of
neighbors because accurate description of forces is more important for
reliability of MD simulations.

3.3. Comparison of MTP with semi-empirical potentials

Imagine one needs an interatomic potential in order to simulate a
certain phenomenon at atomic scale. Of course one may develop a task-
specific semi-empirical potential, but this is a challenging and time
consuming problem itself. It is therefore more common to employ ex-
isting interatomic potential. An alternative approach is to fit an MTP via
an active learning on-the-fly algorithm. This concept is also very
practical and does not require large amounts of time or computational
resources.

It is now interesting to compare the accuracy of these two ap-
proaches. The comparison is made for molybdenum, since MTP pro-
vides the least accurate description of DFT data in this case. Several
semi-empirical interatomic potentials for Mo were selected [15-17].
The potentials have different functional forms: EAM [15], ADP [16] and
MEAM [17]. Note that all the potentials were parametrized based solely
on DFT calculations.

MTPs were trained via the active learning on-the-fly algorithm, the
length of the corresponding trajectory was 1ns. For all of the con-
sidered potentials, the errors were estimated based on 500 configura-
tions that were randomly selected from equilibrium QMD trajectories of
20 ps. The training and error estimations were performed at two dif-
ferent temperatures: 1450 K (0.5 T,e;) and 2600 K (0.9 T,,). The re-
sulting error distributions are plotted on Fig. 3.

It should be noted first that the investigated semi-empirical poten-
tials do not reproduce the absolute energies of configurations. Hence
the mean values were subtracted from the distributions of energy errors
in order to facilitate the comparison on Fig. 3. The subtracted values are
given in the legends. It can be seen from the figure that MTP has both
the lowest mean error and the narrowest error distribution at both of
the temperatures.

Interestingly, an increase in the number of adjustable parameters in
the sequence EAM-ADP-MEAM does not lead to notable enhancement
of accuracy of the potential, at least at 2600 K. At this temperature,
MEAM yields a wider distribution of errors than EAM, and it also gives
uncertainties larger than 30 meV/atom which are stacked in the last
bin. However, the accuracy of MEAM at 1450 K is somewhat better than
that of EAM and ADP.

Similar tendencies can be observed on the force error distributions
on Fig. 3. MTP is significantly more accurate than MEAM, ADP or EAM
at both temperatures. MEAM yields large maximum errors, but the most
frequent errors in this case is a bit smaller than that of EAM and ADP.
Considering the latter two, EAM yields a smaller maximum error at the
high temperature, but a larger mean error at 1450 K.

As expected, stresses are also reliably reproduced by MTP.
Noteworthy, the stress errors of both EAM and ADP decrease with
temperature, while the MEAM errors, on the contrary, demonstrate a
slight increase.

One could justifiably object at this point, that it is not entirely
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correct to compare potentials that are supposed to work in a wide range
of temperatures (EAM, ADP, MEAM) with the one that was fitted at this
particular temperature (MTP). To address this concern, the MTP trained
at 2600K was tested with respect to the configurations obtained at
1450 K and vice versa. The results of the tests are plotted on Fig. 3 with
dotted lines.

Let us denote the potentials trained at 2600 and 1450 K as the “hot”
and the “cold” one, respectively. It can be seen from Fig.3 that the “hot”
potential works fine at 1450 K, since it yields approximately the same
error distributions as at 2600 K. Despite the fact that its accuracy at
1450K is lower compared to the “cold” MTP, it is still notably better
than that of EAM, ADP or MEAM.

The performance of the “cold” potential at 2600 K is substantially
different. It describes energies similarly to EAM or ADP, except for
much smaller mean error. Forces are reproduced much better, almost as
good as in the case of the “hot” MTP. However, a closer examination
reveals that the maximum force error of the “cold” MTP is four times
larger as compared to the “hot” potential.

Considering the stress error histograms on Fig. 3, the “hot” potential
performs better than EAM or MEAM at low temperature. The “cold”
MTP demonstrates fairly wide error distribution at 2500 K with large
maximum error of 63.3 kB, however the value is comparable with that
of EAM (53.5kB). Therefore, it can be concluded that MTP trained at
significantly different temperature reproduces stresses similarly to
semi-empirical potentials.

In general, it follows from Fig. 3 that the “hot” MTP employed at the
low temperature yields higher mean, but acceptable maximum errors.
The “cold” potential, on the contrary, yields large maximum errors,
when used at the high temperature. This behavior is likely caused by
the features of the selection algorithm employed by MTP. As follows
from [2], MTP is designed to select configurations that are as dissimilar,
as possible. In other words, MTP selects configurations in order to
maximize the phase space volume covered by them. As can be seen
from Fig. 2, this strategy allows one to reduce maximum errors, but also
causes a slight increase in the mean error.

Now consider the two temperatures: high and low. The phase space
area covered by an MD trajectory usually increases with temperature.
Therefore, configurations selected while training the “hot” MTP cover
the whole phase space area of the low-temperature trajectory. This
explains why the “hot” MTP yields similar distributions of energy and
force errors at both temperatures. The “cold” potential, on the other
hand, has no information about certain areas of the high-temperature
phase space, because they were not covered by the low-temperature
trajectory. Hence the “cold” MTP has to extrapolate, while being em-
ployed at the high temperature. This, in turn, leads to large maximum
EerTors.

To summarize, a rule of thumb is that MTPs can be used at a lower
temperature than the one they were trained on. However, it is not re-
commended to employ the potential at higher temperatures, because
large maximum errors are expected. If one needs an MTP for higher
temperatures, it is much better to use the “cold” MTP as a starting point
and then to improve it via the active learning on-the-fly algorithm.

3.4. Application of MTP to diffusion

It was demonstrated in the previous part of the paper that MTPs are
generally more accurate than semi-empirical interatomic potentials.
However, all the tests discussed above evaluate only the ability to re-
produce the results of DFT calculations. Let us now perform more
realistic evaluations by employing MTP to compute vacancy diffusion
coefficients in aluminum, molybdenum and silicon.

3.4.1. Analysis of selection process

Diffusion was chosen as a test problem because one may suppose
that MTPs and the corresponding learning on-the-fly algorithm are
particularly suitable for investigation of rare-event processes. Indeed,
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Fig. 3. Distribution of MTP errors for energies (first row), forces (second row) and stresses (third row) in molybdenum. Left column: 1450 K, right: 2600 K. “MTPo”
denotes the MTP trained at 2600 K for the left column, and at 1450 K for the right one. Note that the values outside of the plot ranges are placed in the last bin (e.g.

look at the MEAM forces at 2600 K).

an MD trajectory wanders inside a potential basin most of the time in
this case. It means that the system remains in the same area of the phase
space most of the time. Therefore, MTP can be used to learn this area
and replace expensive DFT calculations, at least during the long waiting
periods between transition events. Moreover, MTP should recognize the
moment when the event eventually occurs and invoke the DFT code.
We plotted the number of DFT calls as a function of the simulation time
on Fig. 4 in order to visualize this kind of behavior.

One can clearly see from the figure that the number of DFT calls
grows rapidly after the start of the run. Then the curve starts to level out
approximately at the step of 10*. The flattening of the curve indicates
that the potential surface is already well-sampled by the MTP.
However, the system continues to explore the phase space, hence new
configurations are occasionally selected.

Often a series of DFT calculations is made in a row, indicating that
the trajectory escaped from the known area of the phase space. Such
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Fig. 4. The number of DFT calculations as a function of simulation step number
during learning on-the-fly of MTP. The results were obtained for Al at 800 K.
Vertical dashed lines indicate the MD time steps, when diffusion jumps oc-
curred.

moments can be seen on Fig. 4 as steps on a flat part of the curve. It is
natural to expect that the positions of the steps will correlate with the
diffusional jumps, since new areas of the phase space are visited in this
case. The jump times are indicated on Fig. 4 with vertical dashed lines.
It is evident from the plot that the correlation, if present, is not very
strong. For example, no steps are visible at the times of the first, the
second and the fourth jumps.

One possible explanation of this effect is that the system samples
phase space near the dividing surface during unsuccessful jump at-
tempts, hence MTP does not have to learn new configurations when the
actual jump occurs. Another possibility is that, even if the learning
occurs, only a few configurations could be selected during the jump,
therefore no step is visible on Fig. 4.

It is useful to visualize training sets in order to understand whether
configurations near the saddle points are actually selected. Therefore,
we considered training sets after active learning on-the-fly, the same as
in the Section 3.3. A set of configurations randomly chosen from Mo
trajectory was also considered for the purpose of comparison. Then
atoms in the configurations were relaxed to their equilibrium positions
via conjugate-gradient energy minimization algorithm implemented in
the VASP code. Displacement magnitude of an atom during the mini-
mization was subsequently used as a natural measure of its proximity to
a saddle point.

Distributions of the displacements are plotted on Fig. 5. Note that
their values are normalized to the nearest-neighbor distance Ryy for
each of the materials. The employed Ryy values are 2.89, 2.74 and
2.36 A for Al, Mo and Si, respectively. As depicted on Fig. 5, the shapes
of the distributions for different materials are rather similar. Moreover,
the distributions for the randomly (“Mo-r”) and actively (“Mo”) se-
lected sets are also very alike. The latter fact is interesting because
active learning selects divergent configurations, therefore one may
expect that the distribution for the “Mo” set would be shifted to the
right with respect to the “Mo-r”.

This similarity could be due to the fact that the selection algorithm
chooses not individual atomic environments, but the whole configura-
tions. Therefore, beside “interesting” environments, dozens of other
fairly “usual” ones are also added to the training set. These con-
siderations suggest that only the “tales” of the distributions should be
different, and the inset on Fig. 5 demonstrates that they indeed are. It
can be seen from the plot that the maximum displacements in randomly
sampled configurations are less then 0.32 Ryy, while the actively se-
lected set include AR; up to 0.45 Ryy.

One can also see from the inset that Al, Mo and Si sets contain
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Fig. 5. Distribution of atomic displacements in the training sets, selected during
active learning on-the-fly. All trajectories correspond to the same homologous
temperature of 0.75 T,,. The “Mo-r” curve corresponds to the randomly selected
set of configurations.

dissimilar numbers of largely-displaced atoms. This is likely caused by
the fact that the materials have different diffusivities even at close
homologous temperatures. Indeed, the Si trajectory contains more then
a thousand of the jumps, Mo - around 500, and only about 10 diffusive
hops has happened while the MTP for Al was trained.

3.4.2. Calculation of diffusion coefficients

Let us now proceed to the calculation of diffusion rates in order to
evaluate the ability of MTP to reproduce properties of configurations
near the dividing surface. As follows from Fig. 1, MTP errors for alu-
minum are lower than those for the other materials, therefore it is
convenient to consider aluminum first.

The coefficients of self-diffusion in aluminum were calculated in a
standard way as described in the Methods, the results are plotted on
Fig. 6. The figure also depicts the diffusivities obtained from the con-
ventional (“DFT”) and accelerated (“DFT + PRD”) quantum MD [18],
as well as experimental data (given in grey) [19-23]. It can be seen
from Fig. 6 that the results of MTP calculations nicely agree with the ab
initio data at high temperatures, however notable discrepancies are
observed at temperatures below 800K. In particular, diffusivities

10-7 \ﬁ‘ = Messer [19]
. e Lundy [20]
v Beyeler [22]
1078 ' ---- Stoebe [21]
e Fradin [23]
5 N DFT+PRD [18]
210 Al DFT [18]
E MTP
(8] 10-10 MTP850
3
w0
Q 10—11
10 s \@A‘Sv_]
AL
107434 b .
1.0 1.2 1.6 1.8

14
1000/T, 1/K
Fig. 6. Coefficients of self-diffusion in aluminum. Experimental data is in grey.
Green and red dashed lines correspond to Arrhenius fit of the “DFT + PRD” and

“MTP” series, respectively. The MTP point at 600 K is ignored during the fit, see
text for details.
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estimated from MTP simulations at 750 and 700K are approximately
two times lower than the values obtained from PRD-accelerated DFT.

One could speculate that the discrepancies are caused by over-
estimation of the diffusivities obtained from accelerated DFT, since
rather limited statistics is available at low temperatures in this case.
Another plausible explanation is that the MTP underestimates diffusion
rates at low temperatures due to poor sampling of the phase space near
the dividing surface. As mentioned above, only about 10 jumps have
happened during active learning of MTP at 700 K. A reasonable way to
cope with the problem might be to employ MTP trained at a higher
temperature. Such potential is expected to provide more accurate de-
scription of infrequent configurations, e.g. during diffusion jumps. On
the other hand, it follows from Fig. 2 that more frequently encountered
atomic environments should still be reliably described in this case.

Following these considerations, we employed an MTP trained at
850K (hereafter MTP850) to calculate diffusion rates at lower tem-
peratures. The results are depicted on Fig. 6 as the “MTP850” series. It
is clearly seen from the figure that the obtained diffusivities are very
close to the previously calculated values (“MTP” series). The only ex-
ception is the temperature of 600 K, where MTP850 yields significantly
higher diffusion coefficient than the MTP trained at 600 K. However,
the discrepancy is not surprising, since no diffusion jumps has hap-
pened during active learning on-the-fly of the MTP at 600 K. Therefore
the 600 K point of the “MTP” series will be disregarded in the analysis
below.

The observed correspondence of the “MTP” and “MTP850” series
suggests that the underestimation of diffusion rates with respect to
PRD-accelerated DFT is not caused by insufficient sampling of the phase
space. Therefore, we are left to conclude that MTP overstates vacancy
migration energy for some reason, e.g. due to specifics of the employed
basis functions (see Eq. 1 for details). Indeed, Arrhenius fit of the
“DFT + PRD” series yields migration energy of 0.55 eV, while the fit of
“MTP” data gives 0.65 eV. Nevertheless, both of the values are close to
0.6 and 0.57 eV obtained in [24,25], respectively, in the framework of
DFT. Moreover, both MTP and DFT results closely correspond with the
experimental data in the entire temperature range considered.

Let us now consider self-diffusion of molybdenum. The values of
diffusion coefficients were calculated in the same way as for aluminum,
the data is plotted on Fig. 7. The figure also presents the results of DFT
calculations (“Mattson”) [13] and experimental data (in grey) [26-28].
At first glance, the results of MTP calculations match DFT data fairly
well. However, a closer look reveals that the MTP points are notably
lower than the DFT curve at temperatures below 2350 K. Note that a
similar behavior was observed for aluminum. Therefore, as in the case
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Fig. 7. Coefficients of self-diffusion in molybdenum. Experimental data is in
grey. “MTP2700” — the MTP trained at 2700 K is employed to calculate diffu-
sivities at lower temperatures.
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of Al, an MTP trained at a high temperature (2700 K) was employed to
calculate diffusion coefficients at lower temperatures. The results are
plotted on Fig. 7 as the “MTP2700” series. It could be seen from the
figure that the high-temperature MTP indeed demonstrates a better
agreement with the DFT data compared to the potentials trained at
lower temperatures.

Next, we employ MTPs to investigate self-diffusion in silicon. Note
that this is a rather complicated process that is still being extensively
studied. However, it seems established that, unlike Al and Mo, self-
diffusion in silicon occurs through migration of both vacancies and
interstitials.

Interstitials are believed to be charged [30,31] and dominate self-
diffusion at temperatures above 1170 K [32-34]. Their diffusion prop-
erties are relatively well-established compared to vacancies, since ex-
tremely precise measurements of self-diffusivities are required in the
latter case. Discrepancies between estimations of vacancy contribution
to self-diffusion [34-36] indicate that this task is very challenging from
the experimental point of view, see discussion in [36] for details.
Therefore, an application of MTP to this problem could be of interest.

Vacancy diffusion coefficients in silicon were calculated the same
way as it was done for aluminum and molybdenum. The results are
depicted on Fig. 8 along with the literature data. It can be seen from the
plot that the values obtained with MTPs are in reasonable agreement
with the other theoretical result, especially the LDA calculations
[11,37]. However, the correspondence with experimental data [14] is
rather limited, especially considering the values of migration energy.

The Arrhenius parameters, namely the pre-exponential factors and
migration energies, are given in Table 1 in order to facilitate further
comparison. One can see from the table that migration energies are
indeed severely underestimated in LDA calculations. The generalized
gradient approximation in the PBE form yields significantly higher
migration energies, but they are still twice as low as compared to the
experimental values. These disadvantages of LDA and GGA-PBE with
respect to silicon are well-known and discussed in the literature [38,40]
where it is suggested that hybrid exchange-correlation functionals, e.g.
HSE06, should be employed in order to obtain more reliable results.

It is worth to remind that several hundreds of DFT calculations are
required in order to train MTP, even for a single temperature. This task
is hardly feasible for hybrid functionals, since calculation of the
Hartree-Fock exact exchange term is exceptionally demanding from the
computational point of view. Therefore, the PBE functionals were em-
ployed in this work. Indeed, our aim was not to calculate accurate
vacancy diffusion rates in Si, but rather to demonstrate the applicability
of MTP to the investigation of diffusion in non-metallic materials.

Y% Blochl (LDA) [11]
—— Tang (LDA) [37]
3 —— Ma (PBE) [30]

@ MTP + PBE
—== Voronkov (EXP) [14]

D,,10~% cm?/s

0.6 1

0.4 1

06 07 038 09 1.0
1000/T, 1/K
Fig. 8. Vacancy diffusion coefficient in silicon. Error bars correspond to stan-
dard deviation of the points. The data of Koizumi et.al. [29] is not shown on the

plot, since it is several orders of magnitude lower than the other values.
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Table 1

Vacancy diffusion parameters obtained by different methods. TBMD - tight
binding MD; hTST — harmonic transition state theory. Note that the D, values
published in [29,37] were divided by 0.5, since correlation effects were not
considered in the original papers.

Do, cm?/s Hy,, eV Method Ref.
2.36-10~4 0.1 LDA + TBMD Tang et al. [37]
1.7-10~6 0.13 LDA + MD Koizumi et al. [29]
2.3.1073 0.28 PBE + hTST Ma and Wang [30]

7.10~4 0.2 PBE + MTP This work
- 0.18 PBE + NEB This work
- 0.57 HSE06 + NEB Spiewak et al. [38]
2..1073 0.38 Experiment Voronkov et al. [14]
1.2-1073 0.45 Experiment Watkins [39]
10—12
Shimizu [34]
Voronkov [14]
Watkins [39]
10—14
Bracht [36]
Kube [35]
(%] MTP
A
N 19-16 Bracht [33]
g
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Fig. 9. Vacancy contribution to self-diffusion in silicon. Error bars are smaller
than the point sizes.

Therefore, we calculated the migration energy via the nudged elastic
band (NEB) method in order to validate the MTP results. It can be seen
from Table 1 that NEB yields H,, = 0.18 eV, which is close to 0.2 eV
obtained from MTP calculations.

Note that Ma and Wang [30] obtained considerably different NEB
results. They report the migration energy that is 0.1 eV higher than the
value obtained in this work. Additional analysis revealed that the dis-
crepancy is caused by the difference in the employed lattice constants.
We adopted the experimental lattice parameter of 5.445 A [8], while the
theoretical value of 5.475 A was employed in [30]. Using the latter
value, we also obtained the 0.28 eV barrier.

Now, when we are sure that MTP reliably reproduces DFT data, the
vacancy diffusion coefficients can be used to calculate corresponding
contribution to self-diffusion. This was done in a standard way, as
discussed in the Methods section. The vacancy formation parameters
were adopted from the experimental work [14]. The results are plotted
on Fig. 9 along with the experimental data. One can see from the figure
that, despite the significantly different migration energy, the calculated
values are still in a reasonable agreement with experiment, at least in
the temperature range where the experiments are usually performed.

4. Conclusion

Moment tensor potentials (MTP) are a recently proposed class of
machine-learning interatomic potentials. In order to stimulate further
development and application of MTPs, it is important to test them on
practical problems. In this work, we identified advantages and limita-
tions of MTPs on the example of calculation of vacancy diffusivities in
aluminum, molybdenum and silicon.

55

Computational Materials Science 164 (2019) 46-56

A major advantage of MTPs is the ability to actively select config-
urations and train the potential on-the-fly. This feature allows one to
automatically parametrize MTP for specific conditions (e.g. tempera-
ture and pressure) and thus significantly decrease the required amount
of time and computational resources. This makes MTPs a very practical
and powerful tool for modeling of materials at atomic scale.

At the same time, it was demonstrated that MTPs trained at low
temperatures tend to underestimate diffusivities. This pitfall could often
be avoided by application of MTPs trained at higher temperatures.
Therefore, the obtained diffusion coefficients and migration energies
are generally in a good agreement with DFT calculations for all of the
considered materials. This is indeed impressive, since the potentials
were not specifically fitted to reproduce migration barriers.
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