
MULTISCALE MODEL. SIMUL. c© 2014 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 1258–1293

(IN-)STABILITY AND STABILIZATION OF QNL-TYPE
ATOMISTIC-TO-CONTINUUM COUPLING METHODS∗

CHRISTOPH ORTNER† , ALEXANDER V. SHAPEEV‡ , AND LEI ZHANG§

Abstract. We study the stability of ghost force-free energy-based atomistic-to-continuum (a/c)
coupling methods. In one dimension we essentially complete the theory by introducing a universally
stable a/c coupling as well as a stabilization mechanism for unstable coupling schemes. We then
present a comprehensive study of a two-dimensional scalar planar interface setting, as a step towards
a general two-dimensional/three-dimensional vectorial analysis. Our results point out various new
challenges. For example, we find that none of the ghost force-free methods known to us is universally
stable (i.e., stable under general interaction and general loads). We then explore to what extent our
one-dimensional stabilization mechanism can be extended.
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1. Introduction. Atomistic-to-continuum (a/c) coupling schemes are a class of
computational multiscale methods for the efficient simulation of crystalline solids in
the presence of defects. Different variants have been among the tools of computational
materials science for many decades [18, 9, 19]. More recently, a numerical analysis
theory of a/c coupling has emerged; we refer the reader to [17] for an introduction, a
summary of the state of the art, and extensive references.

While the consistency theory of a/c coupling methods has a solid foundation
[21, 23], understanding their stability properties essentially remains an outstanding
open problem. The main difficulty is that the a/c model interface, even if treated
consistently, can generate new eigenmodes present in neither the atomistic nor the
continuum model, which can render a/c coupling methods unstable. Indeed, we em-
phasize that we are not only concerned with questions of analysis but also with the
construction of stable schemes.

In one dimension, an essentially complete survey of stability is presented in the
review article [17], which is partially based on the results of the present paper. In
dimensions greater than one, very little is known. A universal stability result has been
proven in [15], but for a coupling scheme that requires a macroscopically thick inter-
face region. Some recent progress on getting sharp bounds on the required blending
width for force-based a/c coupling [13, 14] remains incomplete and partially based
on numerical evidence. For a sharp interface force-based coupling scheme more com-
prehensive analytical results are presented in [16], but even these are restricted to
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flat a/c interfaces and are dependent upon conditions that cannot be readily checked
analytically.

In the present work we focus on the stability of a particular class of conservative
a/c schemes, generally called coupling schemes of quasinonlocal (QNL) type. In one
dimension we present examples of stability and instability (section 3), construct a new
“universally stable” scheme (section 4), and further show how unstable QNL schemes
can be stabilized (section 5).

We then consider a two-dimensional (2D) model problem, for which our results
are more limited, in that we need to make much more stringent assumptions on the
deformation and interaction potential than in one dimension. Within these assump-
tions, we show that there is a source of instability in 2D interfaces which was not
present in the one-dimensional (1D) setting (section 7.1). Moreover, we show that
this instability is universal. It is not only present in specific instances of QNL-type
a/c couplings, but in a fairly wide class of generalized geometric reconstruction meth-
ods [25] (section 7.2), which cover most of the existing methods. This new source of
instability is more severe than the instabilities observed in one dimension and cannot
be “easily” stabilized. To be precise, we show that stabilizing QNL-type schemes
in two dimensions severely affects their consistency when the system approaches a
bifurcation point (section 7.4).

2. A general 1D QNL formulation.

2.1. Notation for lattice functions. For a lattice function v : Z → R and
ρ ∈ Z \ {0}, we define the finite difference operators

Dρv(ξ) := v(ξ + ρ)− v(ξ).

For some finite interaction stencil R = {±1, . . . ,±rcut}, where rcut ∈ N is a fixed
cut-off radius, we define

Dv(ξ) :=
(
Dρv(ξ)

)
ρ∈R.

The space of compact displacements is defined by

W0 :=
{
u : Z → R

∣∣ supp(u) is bounded}.
Each lattice function v : Z → R is identified with its canonical continuous piece-

wise affine interpolant. In particular, we define the gradients ∇v(x) := v(ξ)−v(ξ−1)
for x ∈ (ξ − 1, ξ).

If H : W0 → W ∗
0 is a linear operator (or 〈H ·, ·〉 a bilinear form on W0), then we

define the associated stability constant

γ(H) := inf
u∈W0

‖∇u‖L2=1

〈Hu, u〉.

We say that H is stable if γ(H) > 0.

2.2. Many-body interactions for an infinite chain. We consider finite range
many-body interactions of deformed configurations of the infinite chain Z. Let V ∈
C2(RR) be the many-body site energy potential with partial derivatives

Vρ(g) :=
∂V (g)

∂gρ
and Vρς(g) :=

∂2V (g)

∂gρ∂gς
for g = (gρ)ρ∈R ∈ R

R.
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We assume that V is invariant under reflections of the local configuration, that is,

(2.1) V
(
(gρ)ρ∈R

)
= V

(
(−g−ρ)ρ∈R

)
.

Immediate consequences of (2.1) are the symmetries

(2.2) V−ρ(FR) = −Vρ(FR) and V−ρ,−ς(FR) = Vρς(FR) ∀ρ, ς ∈ R,F > 0.

A macroscopic strain F and a displacement u ∈ W0 induce a deformed configura-
tion y(ξ) = Fξ + u(ξ), ξ ∈ Z. To such a configuration we assign the energy difference

(2.3) Ea(y) :=
∑
ξ∈Z

[
V (Dy(ξ)) − V (FR)

]
.

Since the lattice sum is finite, this expression is well defined. The first and second
variations with respect to u (in the sense of Gâteaux derivatives) are also well defined
and are given by

〈δEa(y), v〉 :=
∑
ξ∈Z

∑
ρ∈R

Vρ(Dy(ξ)) ·Dρv(ξ) and

〈δ2Ea(y)v, v〉 :=
∑
ξ∈Z

∑
ρ,ς∈R

Vρς(Dy(ξ)) ·Dρv(ξ)Dςv(ξ) for v ∈ W0.

We are particularly interested in the second variation evaluated at the homogeneous
deformation y = Fx (where (Fx)(ξ) := Fξ),

(2.4) 〈Ha
Fv, v〉 := 〈δ2Ea(Fx)v, v〉 =

∑
ξ∈Z

∑
ρ,ς∈R

Vρς ·Dρv(ξ)Dςv(ξ),

where, here and throughout most of this paper, we are suppressing the dependence
of Vρς on FR when it is clear from the context that we mean Vρς(FR).

The stability of nonhomogeneous states y = Fx + u can be deduced from the
stability of homogeneous states; see [17, Theorem 7.8].

2.3. A general QNL formulation. The QNL approximation of Ea [28] transi-
tions between the atomistic model and a continuum model by introducing a modified
site potential at the a/c interface. To simplify our analysis we focus on a single a/c
interface. Let (−∞, 0]∩Z be the atomistic region and R+ := (0,∞) be the continuum
region. In the atomistic region, we employ modified site energies Ṽξ ∈ C2(RR), ξ ≤ 0,
while in the continuum region we employ the Cauchy–Born strain energy density
[1, 10, 8, 24],

W (G) := V (GR).

The QNL a/c coupling energy functional is then given by

(2.5) Eac(y) :=
0∑

ξ=−∞

[
Ṽξ(Dy(ξ)) − V (FR)

]
+

∫ ∞

1/2

[
W (∇y)−W (F)

]
dx

for all deformations y = Fx+ u, u ∈ W0.
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We shall assume throughout that the modified site energies satisfy the following
conditions: there exists ξ0 ∈ Z− such that

Ṽξ,ρ(Dy(ξ)) = 0 whenever ξ + ρ > 1,(2.6)

Ṽξ(Dy) = V (Dy) for ξ ≤ ξ0,(2.7)

δEac(Fx) = 0 ∀F > 0.(2.8)

Condition (2.6) states that atoms do not interact with the continuum region, except
for the interface atom at ξ = 0. Condition (2.7) states that the transition region
is bounded. Condition (2.8) is the force-consistency condition (absence of “ghost
forces”), which ensures first-order consistency of the QNL approximation [21].

As in the case of the atomistic model, Eac is well defined and has variations in the
sense of Gâteaux derivatives. The second variation, evaluated at the homogeneous
deformation y = Fx, Hac

F = δ2Eac(Fx), is given by

(2.9) 〈Hac
F u, u〉 =

0∑
ξ=−∞

∑
ρ,ς∈R

Ṽξ,ρς ·Dρu(ξ)Dςu(ξ) +W ′′(F)

∫ ∞

1/2

|∇u|2 dx.

2.3.1. Error in critical strains. We shall be interested in understanding the
regimes of strains F for which Ha

F and Hac
F are stable. To explain why this is relevant

in practical simulations, consider the following description of a quasi-static loading
scenario (adapted from [5]):

(i) F(t) ∈ C([t0, t∗]) is a given path in deformation space, where t∗ is a critical
load, and constants c0, c1 > 0 such that

c0(t∗ − t) ≤ γ(Ha
F(t)) ≤ c1(t∗ − t) for t0 ≤ t ≤ t∗.

At the critical load t∗ (e.g., a bifurcation) an instability occurs, which typ-
ically indicates the onset of defect nucleation or defect motion (“critical
event”).

(ii) Suppose now that QNL is initially stable but has a reduced stability region:

γ(Hqnl
F(t0)

) > 0 but γ(Hqnl
F(t∗)) < 0. Then there exists a reduced critical load

tqnl∗ < t∗ such that γ(Hqnl

F(tqnl∗ )
) = 0.

In such a situation we first of all predict an incorrect critical load, i.e., incor-
rect magnitude applied forces under which the critical event occurs. More-
over, since the event may occur in a different region of deformation space, it is
even possible that a qualitatively different event is observed (e.g., a different
type of defect is nucleated).

2.3.2. Preliminary estimates. We can immediately make the following generic
observation.

Proposition 2.1. γ(Hac
F ) ≤ γ(Ha

F) for all F > 0.
Remark 2.2. If the atomistic region is finite, then we would obtain that γ(Hac

G ) ≤
γ(Ha

F) + err, where err decreases with increasing atomistic region size. See [10] for
results along these lines.

Proof. Let ε > 0, and let u ∈ W0 such that ‖∇u‖L2 = 1 and 〈Hau, u〉 ≤ γ(Ha
F)+ε.

Upon shifting u by v(ξ) = u(ξ + η) for η sufficiently large, we can assume without
loss of generality that u(ξ) = 0 for all ξ ≥ ξ0 − rcut − 1. Therefore, we obtain

γ(Hac
F ) ≤ 〈Hac

F u, u〉 = 〈Hau, u〉 ≤ γ(Ha
F) + ε.
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Since ε was arbitrary, the result follows.
Proposition 2.1 ensures that if a lattice FZ is unstable in the atomistic model,

then it must also be unstable in the a/c coupling model. The converse question,
whether stability of Ha

F implies stability of Hac
F , is more difficult to answer in general.

This question was first raised in [5] for 1D second-neighbor Lennard-Jones–type pair
interactions, where this implication holds. Further investigations in this direction can
be found in [6, 12, 11]. In the present paper we aim to present a more complete
picture for the case of general range many-body interactions.

To conclude this section, we present another elementary auxiliary result that we
will reference later on. Let the Cauchy–Born energy functional be given by Ec(y) :=∫
R
[W (∇y)−W (F)] dx and the corresponding hessian operator by

〈Hc
Fu, u〉 :=W ′′(F)‖∇u‖2L2 .

Then we have the following result.
Lemma 2.3. γ(Hc

F) =W ′′(F) ≥ γ(Ha
F) for all F > 0.

Proof. The idea of this result is classical; see, for example, [29]. A proof, which
can be translated verbatim to our present setting, is given in [10].

3. (In-)stability of a second-neighbor QNL method.

3.1. The second-neighbor QNL method. The original QNL energy, in the
case of second neighbors (R = {±1,±2}), is given by [28, 4]

Eqnl(y) =

−2∑
ξ=−∞

[
V (Dy(ξ))− V (FR)

]
+

0∑
ξ=−1

[
V (D̃y(ξ))− V (FR)

]

+

∫ ∞

1/2

[
W (∇y)−W (F)

]
dx,

(3.1)

where

D̃ := (D−2, D−1, D1, 2D1).

(That is, interaction of interface atoms with the atomistic region uses the atomistic
finite difference, D−j, while interaction of interface atoms with the continuum region
uses only the nearest-neighbor finite difference, jD1.)

It is well known that this energy functional is force consistent [28, 7],

〈δEqnl(Fx), v〉 = 0 ∀v ∈ W0,

which implies a general first-order consistency result [17, 21].
Moreover, for the case of Lennard-Jones–type interactions under expansion, and

periodic boundary conditions, it has been shown in [5] that γ(Hqnl
F ) > 0 if and only if

γ(Ha
F) > 0, up to a small error. This can be generalized and translated to our setting

as follows.
Proposition 3.1. Suppose that R = {±1,±2} and V (Dy) =

∑
j∈R φ(|Djy|),

where φ ∈ C2(R+). Then, for F > 0, γ(Hqnl
F ) > 0 if and only if γ(Ha

F) > 0.
Proof. We give only a brief outline of the proof, as the essential ideas are already

contained in [5].

We already know that γ(Hqnl
F ) ≤ γ(Ha

F), and hence we prove only the opposite
inequality.
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A short calculation (see [5, 17] for more details), employing the identity

φ′′(2F)|D2u(ξ)|2 = 2φ′′(2F)
{
|D1u(ξ)|2 + |D1u(ξ + 1)|2

}
− φ′′(2F)|D2

1u(ξ)|2,

yields

(3.2) 〈Hqnlu, u〉 = 〈Hcu, u〉 − φ′′(2F)
−2∑

ξ=−∞
|D2

1u(ξ)|2.

Hence, if φ′′(2F) ≤ 0 (Lennard-Jones case), then γ(Hqnl
F ) ≥ γ(Hc

F) ≥ γ(Ha
F).

If φ′′(2F) > 0, then employing the identity 〈Hau, u〉 = 〈Hcu, u〉− φ′′(2F)‖D2
1u‖2�2

(which follows from the same calculation as (3.2)), we obtain

〈Hqnlu, u〉 = 〈Hau, u〉+ φ′′(2F)
∞∑

ξ=−1

|D2
1u(ξ)|2.

Hence, γ(Hqnl
F ) ≥ γ(Ha

F).

3.2. Instability example. Proposition 3.1 leads us to investigate whether the
result holds also for general many-body interactions. An analysis of Li and Luskin
[11] in a similar context, but ignoring the transition from the a/c model, indicates
that this may be false. Indeed, we can construct a counterexample. Here, we present
only a brief summary but give more detail in section A.1. Our example is somewhat
academic in that we do not show that any concrete interaction potential exhibits this
instability, but only that it may occur in principle.

For ease of notation, we write Vρ,ς = Vρ,ς(FR). Exploiting the point symmetry of
V , possibly rescaling by a scalar, we assume that

V1,1 = V−1,−1 = 1, V1,−1 =: α,

V2,2 = V−2,−2 =: β, V2,−2 =: γ,

V1,2 = V−1,−2 = −V−1,2 = −V1,−2 =: δ

for parameters α, β, γ, δ ∈ R. The additional symmetry V1,2 = −V−1,2 that we em-
ployed is consistent with EAM-type potentials.

With these parameters, and a lengthy computation following [5, 11], we obtain

〈Hqnl
F u, u〉 = A

∑
ξ∈Z

|D1u(ξ)|2 +
−0∑

ξ=−∞
Bξ|D2

1u(ξ)|2(3.3)

+

−1∑
ξ=−∞

Cξ|D3
1u(ξ)|2 +D

−2∑
ξ=−∞

|D4
1u(ξ)|2,

whereA,Bξ, Cξ, D ∈ R are coefficients that depend linearly on the parameters α, β, γ, δ.
Choosing the parameter values α = −0.99, β = 0.1, γ = 0.15, δ = −0.2 yields

A = 0.38;

B0 = 0.91, B−1 = 3.26, B−2 = 3.56, Bξ = 3.91 for ξ ≤ −3;

C−1 = −0.5, C−2 = −1.3, Cξ = −1.6 for ξ ≤ −3;

D = 0.15.
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Fig. 1. Relative errors of critical strains for QNL and the restricted atomistic simulation. The
external forces are parameterized by α = 1.5, β ∈ {0.01, 0.066}. See section A.2 for details of the
model and the computation.

By a numerical calculation, we obtain that

γ(Hqnl
F ) < −0.005.

Conversely, using straightforward Fourier analysis, we can show that

γ(Ha
F) = 0.02.

That is, Ha
F is stable, while Hqnl

F is unstable with this choice of parameters. The
details of the calculation are given in section A.1.

3.3. A numerical example. The counterexample from section 3.2 is somewhat
dissatisfying in that it is based purely on experimenting with coefficients, but there is
no clear connection to a physical problem of interest where the predicted discrepancy
in stability occurs. We therefore present a numerical example of a 1D chain with
EAM-type interaction and applied external forces, for which we can still observe this
stability gap. We give a brief outline of the experiment setup; the details of the model
and of the setup are given in section A.2.

We reformulate the QNL model in a finite domain {−N, . . . , N} with atom-
istic region {−K, . . . ,K}. This is implemented by applying the boundary condition
y(ξ) = Fξ for |ξ| ≥ N . Moreover, we apply an external force, to be able to observe
nonlinear deformation effects. Finally, we discretize the continuum region using P1
finite elements. Given N , the atomistic region size K and the FE mesh are chosen
quasi-optimally.

We define the critical strain, Fqnl, to be the smallest strain greater than one, for
which the corresponding equilibrium yF of the energy is unstable, i.e., γ(δ2Eqnl(yF)) ≤
0.

The exact critical strain F∗, against which the error is measured, is defined to be
the critical strain for the unrestricted atomistic model.

In Figure 1 we plot the relative errors in the critical strains, for increasing domain
sizes and hence increasing computational cost (measured in terms of the number of
degrees of freedom required for the computation), for the QNL method and for the
restricted atomistic model. We observe that the critical strains in the restricted
atomistic model display clear systematic convergence, whereas the critical strains of
the QNL method appear to diverge or converge to a wrong limit.
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4. A universally stable a/c coupling in one dimension. Motivated by the
results of section 3 we seek a/c couplings with universally reliable stability properties.

Definition 4.1. An a/c coupling energy Eac is universally stable if, for all
interaction potentials V ∈ C2(RR) and strains F > 0, γ(Hac

F ) > 0 if and only if
γ(Ha

F) > 0.
The analysis in [17] indicates that the behavior we observed in section 3.3 would

not be possible if the QNL method were universally stable, and indeed we saw in
section 3.2 that counterexamples can be constructed.

We will now present the construction of a universally stable a/c coupling. For
simplicity, we consider again the case where the atomistic region is given by Z− =
{0,−1,−2, . . .}. The reflection method, which we formulate in the following para-
graphs, can be understood as a special case of the QNL and geometric reconstruction
ideas [7, 25, 28] but with a particularly simple reconstruction operator.

For any lattice function z : Z → R (both deformations and displacements) we
denote its antisymmetric reflection about the origin by

z∗ :=

{
z(ξ), ξ ≤ 0,

2z(0)− z(−ξ), ξ > 0.

With this notation we define, for y = Fx+ u, u ∈ W0,

Erfl(y) := E∗(y) +

∫ ∞

0

W (∇y) dx, where

E∗(y) :=
−1∑

ξ=−∞

[
V (Dy∗(ξ))− V (FR)

]
+ 1

2

[
V (Dy∗(0))− V (FR)

]
.

One may readily check that Erfl is of the general form (2.5).
The key property, the reason for the name “reflection method,” and in fact the

motivation for the definition of Erfl, is the following.
Lemma 4.2. Let y = Fx+ u, u ∈ W0; then E∗(y) = 1

2Ea(y∗).
Proof. By definition, y∗ is antisymmetric about the origin, and consequently,

Dρy
∗(ξ) = y∗(ξ + ρ)− y∗(ξ)

=
[
2y∗(0)− y∗(−ξ − ρ)

]
−
[
2y∗(0)− y∗(−ξ)

]
= −D−ρy

∗(−ξ).

Due to the reflection symmetry (2.1) of V , we obtain V (Dy∗(ξ)) = V (Dy∗(−ξ)),
which implies the stated result.

Theorem 4.3. The a/c coupling Erfl is force consistent,

(4.1)
〈
δErfl(Fx), v

〉
= 0,

and universally stable,

(4.2) γ(Hrfl
F ) = γ(Ha

F).

Proof of (4.1). From Lemma 4.2 we obtain

〈δE∗(Fx), v〉 = 1
2 〈δE

a(Fx), v∗〉,
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where we note that v∗ does not necessarily belong to W0, but∇v∗ has compact support
and hence the right-hand side is well defined. Lemma 12 in [21] implies that

(4.3) 〈δEa(Fx), v∗〉 =W ′(F)

∫
R

∇v∗(x) dx.

(Note that [21, Lemma 12] is in fact a 2D result; however, the 1D variant is proven
verbatim using the 1D bond density formula [26, Proposition 3.3]. Alternatively, (4.3)
can be proven directly from [26, Proposition 3.1].)

Since ∇v∗ is symmetric about the origin, (4.3) implies that

〈δE∗(F), v〉 = 1
2W

′(F)

∫
R

∇v∗(x) dx =W ′(F)

∫ 0

−∞
∇v(x) dx =W ′(F)v(0).

Inserting this into the definition of δErfl, we obtain

〈δErfl(F), v〉 =W ′(F)v(0) +

∫ ∞

0

W ′(F)∇v(x) dx = 0.

Proof of (4.2). Applying again Lemma 4.2, as well as the symmetry of ∇v∗, we
obtain

〈Hrfl
F v, v〉 = 〈δ2E∗(F)v, v〉 +W ′′(F)

∫ ∞

0

|∇v|2 dx

= 1
2 〈δ

2Ea(Fx)v∗, v∗〉+W ′′(F)‖∇v‖2L2(0,∞)

≥ 1
2γ(H

a
F)‖∇v∗‖2L2(R) + γ(Hc

F)‖∇v‖2L2(0,∞)

= γ(Ha
F)‖∇v‖2L2(−∞,0) + γ(Hc

F)‖∇v‖2L2(0,∞) ≥ γ(Ha
F)‖∇v‖2L2(R);

that is, γ(Hrfl
F ) ≥ γ(Ha

F). Proposition 2.1 shows that this inequality is in fact an
equality.

5. Stabilizing the 1D QNL method.

5.1. The general strain gradient representation. A key component in pre-
vious sharp stability analyses of a/c methods was a decomposition of a/c hessians
into the Cauchy–Born hessian and a strain gradient correction [5, 20, 12]. Here we
generalize these representations to general many-body finite range interactions.

Lemma 5.1. For ξ ∈ Z, ρ ∈ R, define the sets

A(ξ, ρ) :=

{
{ξ, . . . , ξ + ρ− 1}, ρ > 0,
{ξ + ρ, . . . , ξ − 1}, ρ < 0.

Then, for ξ ∈ Z, ρ, ς ∈ R,

Dρu(ξ)Dςu(ξ) =
ρς

2|ρ||ς |
∑

η∈A(ξ,ρ)

∑
η′∈A(ξ,ς)

{
|D1u(η)|2+|D1u(η

′)|2−|D1u(η)−D1u(η
′)|2
}
.

Proof. It is clear from the definitions that

Dρu(ξ) =
ρ

|ρ|
∑

η∈A(ξ,ρ)

D1u(η),
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and therefore,

Dρu(ξ)Dςu(ξ) =
ρς

|ρ||ς |
∑

η∈A(ξ,ρ)

∑
η′∈A(ξ,ς)

D1u(η)D1u(η
′).

Applying the identity

D1u(η)D1u(η
′) = 1

2 |D1u(η)|2 + 1
2 |D1u(η

′)|2 − 1
2 |D1u(η)−D1u(η

′)|2

yields the stated result.
Lemma 5.2. Let Hac

F be of the general form (2.9); then

(5.1) 〈Hac
F u, u〉 = 〈Hc

Fu, u〉+ 〈Δac
F u, u〉,

where

〈Δac
F u, u〉 =

2rcut−1∑
j=1

0∑
ξ=−∞

cj(ξ)|D1u(ξ)−D1u(ξ − j)|2 with(5.2)

cj(ξ) =
∑

ρ,ς∈R

ρς

2|ρ||ς |
∑
η∈Z−

ξ∈A(η,ρ),ξ−j∈A(η,ς)

Ṽη,ρς(FR).

Proof. Applying Lemma 5.1 to the representation (2.9) of the QNL hessian, we
immediately obtain that

(5.3) 〈Hac
F u, u〉 =

∑
ξ∈Z

c0(ξ)|D1u(ξ)|2 + 〈Δac
F u, u〉,

where Δac
F is of the form (5.2), and c0(ξ) ∈ R are some coefficients that still need to

be determined. The stated identity for cj(ξ), j ≥ 1, in the definition of the strain
gradient operator Δac

F follows from a straightforward exchange of summation.
To determine c0(ξ), we first note that (2.6) implies c0(ξ) =W ′′(F) for ξ ≥ 1.
To determine the remaining coefficients we apply the force-consistency condition

(2.8). We know from (2.8) that

〈δEac((F+ tG)x), v〉 = 0 ∀v ∈ W0,

for all F > 0, G ∈ R, and t sufficiently small. Taking the derivative with respect to t,
evaluated at t = 0, yields

〈δ2Eac(Fx)Gx, v〉 = 0 ∀v ∈ W0,

or, written in terms of the representation (5.3),∑
ξ∈Z

c0(ξ)(G · a1)D1v(ξ) + 〈Δac
F Gx, v〉 = 0,

where we extended the definition of c0(ξ) by c0(ξ) =W ′′(F) for ξ > 0.
Since Gx is an affine function, 〈Δac

F Gx, v〉 = 0, and hence we obtain that∑
ξ∈Z

c0(ξ)D1v(ξ) = 0 ∀v ∈ W0.

This implies ξ 
→ c0(ξ) must be a constant, and in particular, c0(ξ) ≡W ′′(F).



1268 C. ORTNER, A. V. SHAPEEV, AND L. ZHANG

5.2. The stabilized QNL method. We observed in Lemma 5.2 that the QNL
hessian can be written as the Cauchy–Born hessian with a strain gradient correction in
the atomistic and interface region. Moreover, due to the “bounded interface condition”
(2.7), we know that the strain gradient correction is the same for the QNL and for the
reflection hessians, except in a bounded neighborhood of the interface. More precisely,
we can write

(5.4) 〈Hqnl
F u, u〉 = 〈Hrfl

F u, u〉+
〈
(Δqnl

F −Δrfl
F )u, u〉,

where

〈
(Δqnl

F −Δrfl
F )u, u〉 =

2rcut−1∑
j=1

−1∑
ξ=ξ1

c′j(ξ)|D1u(ξ)−D1u(ξ − j)|2

for some ξ1 ≤ 0 that depends on ξ0 and on rcut and for coefficients c′j(ξ) := cj(ξ) −
crflj (ξ). If c′j(ξ) ≥ 0 for all ξ, then we obtain that 〈Hqnl

F u, u〉 ≥ 〈Hrfl
F u, u〉, and hence

the QNL method is universally stable.
If c′j(ξ) < 0 for some j, ξ, then we can redefine a stabilized QNL energy

(5.5) Estab(y) := Eqnl(y) + κ〈Su, u〉 for y = Fx+ u, u ∈ W0,

where κ > 0 is a stabilization constant and S is the stabilization operator defined
through

(5.6) 〈Su, u〉 :=
−1∑

ξ=ξ1−2rcut+2

|D−1D1u(ξ)|2.

Because the stabilization involves only second derivatives, this modification does not
affect the first-order consistency of the QNL method; see Remark 5.4.

Theorem 5.3. Fix a bounded set F ⊂ R (a range of macroscopic strains F of
interest). Then there exists a constant κ0 ≥ 0 such that, for all κ ≥ κ0 and for all
F ∈ F , δ2Estab(Fx) is stable if and only if Ha

F is stable.
An upper bound on κ0 is given by

κ0 ≤ sup
F∈F

∑
ρ,ς∈R

(|ρ|+ |ς |)2|ρ||ς | sup
ξ∈Z−

∣∣Vξ,ρς(FR)− V rfl
ξ,ρς(F)

∣∣,
where V rfl

ξ is the effective site potential of the reflection scheme.

Proof. We know from Proposition 2.1 that if Ha
F is unstable, then Hstab

F is unsta-
ble, so we need only prove the converse statement.

Since the reflection method is universally stable, it follows from (5.4) that it is
sufficient to prove that 〈

(Δqnl
F −Δrfl

F )u, u〉+ κ〈Su, u〉 ≥ 0

for κ sufficiently large. To prove that this is indeed the case, we simply compute an
upper bound on |

〈
(Δqnl

F −Δrfl
F )u, u〉|:

∣∣〈(Δqnl
F −Δrfl

F )u, u〉
∣∣ ≤ 2rcut−1∑

j=1

−1∑
ξ=ξ1

|c′j(ξ)||D1u(ξ)−D1u(ξ − j)|2

≤
2rcut−1∑

j=1

−1∑
ξ=ξ1

|c′j(ξ)|j
ξ∑

η=ξ−j+1

∣∣D−1D1u(η)
∣∣2,



(IN-)STABILITY AND STABILIZATION OF A/C METHODS 1269

where we used the Cauchy–Schwarz (or the Jensen) inequality. Upon reordering the
summation, we obtain∣∣〈(Δqnl

F −Δrfl
F )u, u〉

∣∣
≤

−1∑
η=ξ1−2rcut+2

∣∣D−1D1u(η)
∣∣2{ 2rcut−1∑

j=max(1,ξ1−η+1)

min(η+j−1,−1)∑
ξ=max(η,ξ1)

|c′j(ξ)|j
}

=:

−1∑
η=ξ1−2rcut+2

∣∣D−1D1u(η)
∣∣2d′(F, η).

Letting κ0 := maxη,F∈F d
′(F, η) yields the result.

To get an upper bound on this quantity, we next estimate |c′j(ξ)|. Let

m′(ρ, ς) := sup
ξ∈Z−

sup
F∈F

|Vξ,ρς − V rfl
ξ,ρς |;

then

|c′j(ξ)| ≤
1

2

∑
ρ,ς∈R

∑
η∈Z−

ξ∈A(η,ρ),ξ−j∈A(η,ς)

m′(ρ, ς),

and noting that the sum over η is taken over at most min(|ρ|, |ς |) sites and, moreover,
that only the sum over ρ, ς satisfying |ρ|+ |ς | ≥ j needs to be taken into account, we
obtain

|c′j(ξ)| ≤
1

2

∑
ρ,ς∈R

|ρ|+|ς|≥j

min(|ρ|, |ς |)m′(ρ, ς).

Inserting this estimate into the definition of d′(F, η) gives

d′(F, η) ≤
2rcut−1∑

j=max(1,ξ1−η+1)

min(η+j−1,−1)∑
ξ=max(η,ξ1)

∑
ρ,ς∈R

|ρ|+|ς|≥j

1
2 min(|ρ|, |ς |)(|ρ| + |ς |)m′(ρ, ς),

where we estimated j ≤ (|ρ| + |ς |). Next, using 1
2 min(|ρ|, |ς |)(|ρ| + |ς |) ≤ |ρ||ς |, and

noting that the sum over ξ ranges over at most j values, we further estimate

d′(F, η) ≤
2rcut−1∑

j=max(1,ξ1−η+1)

j
∑

|ρ|+|ς|≥j

|ρ||ς |m′(ρ, ς)

≤
∑

ρ,ς∈R
|ρ||ς |m′(ρ, ς)

min(2rcut−1,|ρ|+|ς|)∑
j=1

j ≤
∑

ρ,ς∈R
|ρ||ς |(|ρ|+ |ς |)2m′(ρ, ς).

This establishes the estimate for κ0.
Remark 5.4 (consistency of the stabilized QNL method). If the cost of stabilizing

the QNL method is a loss in consistency, then little can be gained by the procedure
proposed in the foregoing section. However (ignoring finite element coarsening of the
continuum region), it is easy to show that

‖δEstab(u)− δEa(u)‖W ∗ ≤ ‖δEqnl(u)− δEa(u)‖W ∗ + 2κ0‖D−1D1u‖�2(I),



1270 C. ORTNER, A. V. SHAPEEV, AND L. ZHANG

Fig. 2. Relative errors of critical strains for the QNL, REFL, and stabilized QNL methods
and external forces parameterized by α = 1.5, β ∈ {0.01, 0.066}. The stabilization parameter for the
stabilized QNL method is κ = 0.1. The graphs for the REFL and STAB methods lie visually on top
of one another.

where I := {ξ1−2rcut+1, . . . ,−1}. That is, the additional consistency error commit-
ted by the stabilization is of first order, which is the same as the consistency error of
the QNL method [20, 21, 25, 2]. (The terminology for the order of the upper bound
follows the convention used in [17].)

Moreover, the prefactor κ0 is bounded in terms of the partial derivatives Vξ,ρς .
Having some uniform bound on these partial derivatives Vξ,ρς is a prerequisite to
obtain a first-order error estimate [21, 25]. For example, for geometric reconstruction–
type methods [28, 7, 25] one can show that these are bounded in terms of a norm on
the reconstruction coefficients.

In summary, we can conclude that the stabilization (5.4) will normally not affect
the consistency of the QNL method.

5.3. Numerical example. We may now revisit the numerical example from
section 3.3 and add the universally stable reflection method and the stabilized QNL
method to the graph. We choose the QNL stabilization parameter κ = 0.1 by trial and
error. The extension of the two methods to the finite domain used in this experiment
is straightforward.

The result is displayed in Figure 2. We observe clear systematic convergence of
the critical strains for both the reflection method and the stabilized QNL method,
which is consistent with our analysis in the foregoing sections.

6. QNL formulation of a 2D nearest-neighbor scalar model. In the re-
mainder of the paper we explore possible generalizations of our foregoing results to
higher dimensions. We are unable, at present, to provide results of the same gener-
ality as in one dimension, and we therefore restrict our presentation to the setting of
nearest-neighbor many-body interactions for scalar displacement fields (e.g., antiplane
displacements) in two dimensions, with a “flat” a/c interface. Already in this simple
setting, we will encounter several difficult new issues that must be overcome before
focusing on the even more challenging vectorial case and general interface geometries.
(For the majority of our results, admitting a wider interaction range does not cause
major additional difficulties; see, in particular, [22, Appendix A.4].)
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6.1. Notation for the 2D triangular lattice. Our 2D analysis is most con-
venient to perform in the setting of the 2D triangular lattice, which we denote by

Λ := AZ2, where A =

(
1 cos(π/3)
0 sin(π/3)

)
.

For future reference, we define the six nearest-neighbor lattice directions by a1 :=
(1, 0), and aj := Qj−1

6 a1, j ∈ Z, where Q6 denotes the rotation through angle 2π/6
and we note that aj+3 = −aj.

For a lattice function w : Λ → R, we define the nearest-neighbor differences

Djw(ξ) := w(ξ + aj)− w(ξ).

The interaction range is defined as R = {a1, . . . , a6} and the corresponding finite dif-

ference stencil as Dw(ξ) = {Djw(ξ)}6j=1. Let ‖Dw‖�2 := (
∑

ξ∈Λ

∑3
j=1 |Djw(ξ)|2)1/2.

Let T denote the canonical triangulation of R2 with nodes Λ, using closed tri-
angles; then each lattice function v is identified with its continuous piecewise affine
interpolant with respect to T . In particular, we define ∇vT to be the gradient of v in
T ∈ T and we note that ∇vT · aj = Djv(ξ) if ξ, ξ + aj ∈ T .

The space of admissible test functions is again the space of compactly supported
lattice functions, defined by

W0 :=
{
u : Λ → R

∣∣ supp(u) is bounded}.
For an operator H : W0 → W ∗

0 we define again γ(H) := infu∈W0,‖∇u‖L2=1〈Hu, u〉.
6.2. 2D many-body nearest-neighbor interactions. We fix a nearest-neighbor

many-body (i.e., 7-body) potential V ∈ C2(R6), with partial derivatives

Vi(g) =
∂V (g)

∂gi
and Vij(g) =

∂2V (g)

∂gi∂gj
for g = (gi)

6
i=1 ∈ R

6.

For a deformed configuration y = F ·x+u (where x(ξ) = ξ and F ∈ R
2) we define

the energy difference by

(6.1) Ea(y) =
∑
ξ∈Λ

[
V (Dy(ξ))− V (FR)

]
.

Since the sum is effectively finite, Ea is well defined and admits two variations in the
sense of Gâteaux derivatives, with the second variation given by

〈δ2Ea(y)v, v〉 =
∑
ξ∈Λ

6∑
i,j=1

Vij(Dy(ξ)) ·Div(ξ)Djv(ξ).

We are again particularly interested in homogeneous states y(x) = Fx, and we
define

(6.2) 〈Ha
Fu, u〉 =

∑
ξ∈Λ

6∑
i,j=1

Vij ·Diu(ξ)Dju(ξ),

where, here and throughout, we omit the argument FR in Vij when it is clear from
the context that we mean Vij(FR).
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6.2.1. Symmetries. Inversion symmetry about each lattice point leads us to
assume that V ((gi)

6
i=1) = V ((−gi′)6i=1), where i

′ ∈ {1, . . . , 6} such that ai′ = −ai.
This yields the point symmetry for the second derivatives Vi,j(FR) = Vi′,j′(FR) for
i, j ∈ {1, . . . , 6}; see, e.g., [24]. Since the reference lattice Λ has full hexagonal sym-
metry, it is reasonable to make the stronger assumption that V has full hexagonal
symmetry as well, i.e.,

(6.3) V (g) = V (g6, g1, . . . , g5).

In this case, but only for the deformation F = 0, one can readily deduce the identities

V1,1 = · · · = V6,6 =: α0,

V1,2 = · · · = V5,6 = V6,1 =: α1,

V1,3 = · · · = V4,6 = V5,1 = V6,2 =: α2,

V1,4 = V2,5 = V3,6 =: α3,

(6.4)

where Vi,j = Vi,j(0) and αi ∈ R.
Both symmetries can be derived, e.g., by reducing a three-dimensional (3D) model

to a scalar 2D antiplane model.

6.3. QNL-type methods. We define the Cauchy–Born approximation in a dis-
crete sense,

Ec(y) :=
1

2

∑
T∈T

[
W (∇yT )−W (F)

]
,

whereW (F) := V (FR). Unusually, we have not normalizedW with respect to volume,
which somewhat simplifies notation. (Since each site has associated volume 1, each
element has associated volume 3/6 = 1/2.)

We define the atomistic and continuum lattice sites

Λa := {ξ ∈ Λ | ξ2 < 0}, Λc := {ξ ∈ Λ | ξ2 > 0},

and in addition the kth “row” of atoms

Λ(k) :=
{
ξ ∈ Λ

∣∣ ξ2 = k
√
3/2
}
,

so that Λ(0) is the set of interface lattice sites.
QNL methods are a/c coupling schemes with an energy functional of the form

Eqnl(y) :=
∑
ξ∈Λa

[
V (Dy(ξ))− V (FR)

]
+
∑

ξ∈Λ(0)

[
Ṽ (Dy(ξ)) − V (FR)

]
(6.5)

+
∑
ξ∈Λc

1

6

∑
T∈T ξ∈T

[
W (∇yT )−W (F)

]
,

where Ṽ is a modified interaction potential that is chosen to transition between the
atomistic and Cauchy–Born descriptions. For more details we refer the reader to
[28, 7, 21], and in particular [25], which is closest in terms of analytical setting and
notation to our present paper.

We assume throughout that Ṽ ∈ C2(R6); then the QNL energy is well defined for
y = F · x+ u, u ∈ W0 and has two variations in the sense of Gâteaux derivatives.
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We assume that Eqnl does not exhibit ghost forces,

(6.6) 〈δEqnl(Fx), v〉 = 0 ∀v ∈ W0,F ∈ R
2,

and is energy consistent,

(6.7) Ṽ (FR) = V (FR) ∀F ∈ R
2.

Sometimes, to achieve a more compact notation, we write

Eqnl(y) =
∑

ξ∈Λa∪Λ(0)

[
Ṽξ(Dy(ξ)) − V (FR)

]
+
∑
T∈T

wT

[
W (∇yT )−W (F)

]
,

where Ṽξ = Ṽ for ξ ∈ Λ(0), Ṽξ = V for ξ ∈ Λa, and wT = #(Λc ∩ T )/6. The second

variation (hessian) at y = Fx, Hqnl
F = δ2Eqnl(Fx), is then given by

(6.8) 〈Hqnl
F u, u〉 =

∑
ξ∈Λa∪Λ(0)

6∑
i,j=1

Ṽξ,ij ·Diu(ξ)Dju(ξ) +
∑
T∈T

wT (∇uT )�W ′′(F)∇uT ,

where W ′′(F) ∈ R
2×2 is the hessian of W .

As in the foregoing 1D results we shall focus exclusively on stability at homoge-
neous states. We show in [22, Appendix A.6] how one may extend such results to the
stability of nonhomogeneous states including defects.

We remark that the 2D variant of Lemma 2.3, γ(Ha
F) ≤ γ(Hc

F), remains true [10].
To illustrate that we are not talking about abstract methods, but concrete prac-

tical formulations, we now introduce three specific variants.

6.3.1. The QCE method. The simplest QNL variant is the QCE method [19,
3], which is defined by simply taking Ṽ = V . It is shown in [25] that in our present
setting (nearest-neighbor interaction, flat interface) it satisfies the force-consistency
condition (6.6).

We denote the resulting energy functional by Eqce.

6.3.2. The GRAC-2/3 method. The QCE method does not satisfy the force-
consistency condition (6.6) in domains with corners, nor for second-neighbor interac-
tions [27, 28, 7, 3, 25], and it is still an open problem to formulate a general scheme
that does. A class of methods has been introduced in [25], extending ideas in [28, 7],
which in our context can be defined through

Ṽ (Dy) := V (D̃y), where D̃iy := λiDi−1y + (1 − λi)Diy + λiDi+1y

for λi ∈ R. It is shown in [25] that, for flat interfaces, all of these schemes satisfy
(6.6), and for the choice

λi =

{
1/3, i = 2, 3,
0, i = 1, 4, 5, 6

(and only for this choice), the resulting method (GRAC-2/3) can be extended to
domains with corners while still satisfying (6.6). We denote the resulting energy
functional by Eg23.
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6.3.3. The local reflection method. Finally, we introduce a new a/c coupling
scheme, inspired by our 1D reflection method.

The idea is to apply the reflection method on each site ξ ∈ Λ(0), by point reflection
of the relevant finite difference, which amounts to defining

D̃i :=

{
Di, i = 1, 4, 5, 6,

−Di+3, i = 2, 3,
and Ṽ (Dy) :=

1

2
V (D̃y) +

1

6

∑
T∈T c

ξ∈T

W (∇yT ),

where T c := {T ∈ T |x2 ≥ 0 for all x ∈ T }.
The idea can be seen more clearly if we write the resulting energy functional in

the form

E lrf(y) :=
∑
ξ∈Λa

[
V (Dy(ξ)) − V (FR)

]
+

1

2

∑
ξ∈Λ(0)

[
V (D̃y(ξ)) − V (FR)

]

+
1

2

∑
T∈T c

[
W (∇yT )−W (F)

]
.

It is straightforward to check that this method exhibits no ghost forces.

6.4. Atomistic and Cauchy–Born hessian representations. Our aim is to
develop a generalization of our 1D hessian representation, Lemma 5.2. Towards this
end, we first establish representations for the atomistic and Cauchy–Born hessians.
The result for the QNL hessian will be presented in section 7.

We first state two auxiliary lemmas. The first provides a mechanism for estab-
lishing whether two symmetric bilinear forms are equal.

Lemma 6.1. Let H1, H2 be self-adjoint operators defined through

〈Hiu, u〉 =
∑
ξ∈Λ

3∑
j=1

hi,j(ξ)|Dju(ξ)|2;

then H1 = H2 if and only if h1,j(ξ) = h2,j(ξ) for all ξ ∈ Λ, j = 1, . . . , 3.
Proof. For some η ∈ Λ and j ∈ {1, 2, 3}, we define u(ξ) = δξ,η and v(ξ) = δξ,η+aj ,

where δ is the Kronecker delta. Then the product Dku(ξ)Dkv(ξ) is nonzero if and
only if ξ = η and k = j. Hence,

0 = 〈(H1 −H2)u, v〉 = −(h1,j(η)− h2,j(η)).

Hence we conclude that h1,j(η) = h2,j(η) for all η ∈ Λ and j = 1, 2, 3. The converse
implication is trivial.

In the “canonical” hessian representations of Ea, Ec, Eqnl, products of finite dif-
ferences Diu(ξ)Dju(ξ) occur; see (6.2) and (6.8). In one dimension, we converted
these products into squares of strains and strain gradients. The next lemma provides
an analogous representation for general mixed differences. In [22, Appendix A.4] we
provide the generalization for general finite range interaction.

Lemma 6.2. Let u ∈ W0, ξ ∈ Λ, and i ∈ {1, . . . , 6}; then

Diu(ξ)Di+1u(ξ) =
1
2 |Diu(ξ)|2 + 1

2 |Di+1u(ξ)|2 − 1
2 |Di+2u(ξ + ai)|2,(6.9)

Diu(ξ)Di+2u(ξ) =
1
2 |Di+1u(ξ)|2 − 1

2 |Di+2u(ξ + ai)|2(6.10)

− 1
2 |Di+3u(ξ + ai+1)|2 + 1

2 |DiDi+2u(ξ)|2,
Diu(ξ)Di+3u(ξ) = − 1

2 |Diu(ξ)|2 − 1
2 |Di+3u(ξ)|2 + 1

2 |Di+3Diu(ξ)|2.(6.11)
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Proof. All three identities are straightforward to verify by direct calculations.
Proposition 6.3 (Cauchy–Born Hessian). There exist cj = cj(F), j = 1, 2, 3,

such that

〈Hc
Fu, u〉 =

3∑
j=1

cj
∑
ξ∈Λ

|Dju(ξ)|2,

where W ′′(F) = 1
2

∑3
j=1 cjaj ⊗ aj.

In the hexagonally symmetric case (6.4), we have c1 = c2 = c3 =: c.
Proof. The result can be checked by a straightforward calculation. The complete

proof is given in [22, Appendix A.3].
Next, we establish the “strain gradient” representation of the atomistic hessian.

We define a sum of squares p : RK → R to be a diagonal homogeneous quadratic, i.e.,
a function of the form p(z) =

∑K
k=1 ckz

2
k.

Proposition 6.4. There exists a sum of squares X = XF : R36 → R such that

〈Ha
Fu, u〉 = 〈Hc

Fu, u〉+
∑
ξ∈Λ

X(D2u),

where D2u(ξ) = (DiDju(ξ))
6
i,j=1.

Proof. Applying the identities (6.9)–(6.11) to the original form (6.2) of Ha
F , and

noting the translation invariance of these operations, we obtain

〈Ha
Fu, u〉 =

3∑
j=1

caj
∑
ξ∈Λ

|Dju(ξ)|2 +
∑
ξ∈Λ

X(D2u(ξ)),

where X(D2u) =
∑

i,j bij |DiDju|2 for some coefficients bi,j ∈ R. All that remains is
to show that caj = cj for j = 1, 2, 3.

To prove this, we use a scaling argument. Let u ∈ C∞
0 (R2), and let u(ε)(ξ) :=

εu(εξ); then it is elementary to show, treating the lattice sum as a quadrature rule
(see [10, Proposition 2.1] for an analogous argument), that

2√
3

〈
Hc

Fu
(ε), u(ε)

〉
→
∫
R2

3∑
j=1

cj |∇u · aj |2 dx =

∫
R2

(∇u)�C∇u dx,

2√
3

〈
Ha

Fu
(ε), u(ε)

〉
→
∫
R2

3∑
j=1

caj |∇u · aj |2 dx =

∫
R2

(∇u)�Ca∇u dx,

where C =
∑3

j=1 cjaj ⊗ aj and Ca =
∑3

j=1 c
a
jaj ⊗ aj . (The factor 2/

√
3 accounts for

the density of lattice sites.)
On the other hand, treating the original lattice sum (6.2) as a quadrature rule

yields

lim
ε→0

2√
3

〈
Ha

Fu
(ε), u(ε)

〉
=

∫
R2

6∑
i,j=1

Vij(FR)(∇u · aj)(∇u · aj) dx

=

∫
R2

(∇u)�W ′′(FR)∇u dx,

which coincides with limε→0
2√
3

〈
Hc

Fu
(ε), u(ε)

〉
. This is possible only ifW ′′(FR) = C =

Ca. Since the three rank-1 matrices aj ⊗ aj , j = 1, 2, 3, are linearly independent, we
can conclude that cj = caj for j = 1, 2, 3.
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6.5. Simple cases. 1. Suppose that the potential V is such that Vi,i+2 =
Vi,i+3 ≡ 0 for all i = 1, . . . , 6; that is, only the “neighboring bonds” interact. (In
the hexagonally symmetric case, this amounts to assuming that α2 = α3 = 0.) This
could, for example, be understood as a simple case of bond-angle interaction. Then,
in the proof of Proposition 6.4, only the identity (6.9) is employed but neither (6.10)
nor (6.11). Therefore, X ≡ 0, and we obtain that Ha

F = Hc
F.

2. In the hexagonally symmetric case (6.4), without assuming α2 = α3 = 0, a
straightforward explicit computation yields

c = 2(α0 + α1 − α2 − α3),(6.12)

X(D2u) =
6∑

i=1

(
α2|Di+2Diu|2 + α3|Di+3Diu|2

)
.

7. Instability and stabilization in two dimensions. In this section we will
derive the “strain gradient” representation of the QNL hessian. We shall find that, in
contrast to our 1D result (Lemma 5.2), in two dimensions there is a source of instability
that is different from an error in the strain gradient coefficients and therefore more
severe.

7.1. QNL hessian representation. Applying the rules (6.9)–(6.11) to the
“canonical” QNL hessian representation (6.8) we obtain the following result.

Proposition 7.1. There exist coefficients c̃j(ξ) = c̃j(F, ξ) and sums of squares

X̃ξ : R
36 → R such that

(7.1) 〈Hqnl
F u, u〉 =

3∑
j=1

∑
ξ∈Λ

c̃j(ξ)|Dju(ξ)|2 +
∑
ξ∈Λ

X̃ξ(D
2u(ξ)).

Moreover, the following identities hold:

c̃j(ξ) = cj except if both ξ, ξ + aj ∈ Λ(−1) ∪ Λ(0) ∪ Λ(1),(7.2)

X̃ξ = 0 for ξ2 > 0, and(7.3)

X̃ξ = X for ξ2 < 0.(7.4)

Proof. Applying the identities (6.9)–(6.11) to the hessian representation (6.8) we
obtain (7.1), and all that remains is to prove (7.2)–(7.4).

The identities (7.3) and (7.4) follow from (i) the fact that the site potential of

Hqnl
F coincides with that of Ha

F for ξ2 < 0 and Hc
F for ξ2 > 0, and (ii) the fact that

the sum of squares that the operations (6.9)–(6.11) create depends only on a site
potential Ṽξ.

The remaining property (7.2) can be obtained by understanding which bond co-
efficients ci(η) are “influenced” by the operations (6.9)–(6.11) applied with a given
center atom ξ. These are depicted in Figure 3, and after combining the graphs
for the three identities and rotating them, we see that a lattice site ξ influences
only the coefficients ci(η) corresponding to the 12 bonds Dju(ξ), j = 1, . . . , 6, and
Dj+2u(ξ + aj), j = 1, . . . , 6; cf. Figure 4(a). From this, it follows that a given
coefficient ci(η) is influenced only by the four nodes of the two neighboring trian-
gles; cf. Figure 4(b). Thus, only the bonds depicted in Figure 4(c) are affected by
the modified site potentials, which are precisely those bonds contained in the strip
{x ∈ R

2 | −
√
3/2 ≤ x2 ≤

√
3/2}.
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Fig. 3. Visualization of the identities (6.9)–(6.11). The bullets denote the sites ξ, while the
arrows denote the terms |Dju(η)|2 occurring in these identities. (a) visualizes (6.9); (b) visualizes
(6.10); (c) visualizes (6.11).

Fig. 4. (a) Bonds (arrows) that are affected by the operations (6.9)–(6.11) from a single site
ξ (black disk); (b) sites (black disks) that affect a given bond (arrow) through the operations (6.9)–
(6.11); (c) bonds for which the coefficients c̃j(ξ) of the a/c hessian differ from the coefficients cj of
the Cauchy–Born hessian; cf. Proposition 7.1.

Although we have always restricted our presentation to the flat interface situation,
all results up to this point are generic. That is, they can be generalized to interfaces
with corners and even to long range interactions.

In the next result, where we provide some characterization of the coefficients c̃j(ξ)
in the interface region, we exploit tangential translation invariance.

Lemma 7.2. Suppose that the modified site energies are tangentially translation
invariant, i.e., Ṽξ = Ṽξ+a1 for all ξ ∈ Λ(0). Then the coefficients in the strain gradient
representation (7.1) satisfy

(7.5) c̃j(ξ) = cj ∀ξ ∈ Λ, j = 2, 3.

Moreover, for j = 1 and ξ ∈ Λ(m), m = −1, 0, 1, we have c̃1(ξ) = c̃
(m)
1 (tangential

translation invariance) and

(7.6)

1∑
m=−1

c̃
(m)
1 = 3c1.

Proof. Properties of c̃2, c̃3: By the same argument as in the 1D case (cf. Lemma
5.2) we can prove that

(7.7) 〈Hqnl
F Gx, u〉 = 0 ∀u ∈ W0.

We fix ξ ∈ Λ and test (7.7) with u(η) := δξ,η (i.e., a “hat function”) to obtain

3∑
j=1

c̃j(ξ)(−G · aj) +
3∑

j=1

c̃j(ξ − aj)(G · aj) = 0.
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If we define cj+3(ξ) := cj(ξ − aj) for j = 1, 2, 3, then this can equivalently be stated
as

−G ·
6∑

j=1

c̃j(ξ)aj = 0.

Since this must hold for all G ∈ R
2, we deduce that

(7.8)

6∑
j=1

c̃j(ξ)aj = 0 ∀ξ ∈ Λ.

Using that fact that aj+3 = −aj and a1 + a3 + a5 = 0, we deduce that (7.8) is
equivalent to

(7.9) c̃1(ξ)− c̃4(ξ) = c̃3(ξ)− c̃6(ξ) = c̃5(ξ)− c̃2(ξ) ∀ξ ∈ Λ.

We now test (7.9) with ξ ∈ Λ(1). Due to the translation invariance of the modified
site energies it follows that c̃1(ξ) = c̃4(ξ). Moreover, c̃3(ξ) = c3 and c̃2(ξ) = c2, which
implies that

0 = c3 − c̃6(ξ) = c̃5(ξ)− c2.

This implies (7.5) for ξ ∈ Λ(0). Analogously, testing (7.9) with ξ ∈ Λ(−1) gives (7.5)
for ξ ∈ Λ(−1).

Properties of c̃1: We are left to establish the statements concerning the coefficients
c̃1. Due to the translation invariance of the site potential it immediately follows that

c̃j(ξ) = c̃j(ξ + a1), and hence we can write c̃j(ξ) = c̃
(m)
j for ξ ∈ Λ(m), m = −1, 0, 1.

Finally, (7.6) is a consequence of the energy consistency (6.7). If we allowed
noncompact test functions (as, e.g., in a periodic setting), then we could take the
second variation of Ea(Fx) = Eqnl(Fx) along the displacement u = Gx and obtain

〈Ha
FGx,Gx〉 = 〈Hqnl

F Gx,Gx〉, which would imply (7.6). However, in our case Gx /∈ W0,
which makes the proof of (7.6) more involved.

We start with noticing that the energy consistency implies

6∑
i,j=1

(Ṽi,j − Vi,j)Diu(ξ)Dju(ξ) = 0

for u = Gx and some ξ ∈ Λ(0). We then rewrite this using the rules (6.9)–(6.11) as

3∑
i=1

∑
ρ∈Λ

ρ,ρ+ai∈R∪{0}

(c̃i,ρ − ci,ρ)|Diu(ξ + ρ)|2 + X̃(D2u(ξ))−X(D2u(ξ)) = 0

with some c̃i,ρ and ci,ρ. Next, we substitute u = Gx and use D2(Gx) = 0:

(7.10)

3∑
i=1

∑
ρ∈Λ

ρ,ρ+ai∈R∪{0}

(c̃i,ρ − ci,ρ)|Gai|2 = 0.
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It remains to notice that, since c̃
(m)
i and ci were constructed using the same rules as

c̃i,ρ and ci,ρ, we have

∑
ρ∈Λ

ρ,ρ+ai∈R∪{0}

(c̃i,ρ − ci,ρ) =
1∑

m=−1

(c̃
(m)
i − ci) (i = 1, 2, 3).

Substituting this into (7.10), and using that c̃
(m)
i = c

(m)
i for i = 2, 3, we get

1∑
m=−1

(c̃
(m)
1 − c1)|Ga1|2 = 0

for all G, which immediately implies (7.6).
We see that the key difference between one and two dimensions for the stability of

homogeneous deformations is that the |Dju|2 coefficients in the 1D case are identical
to those in the Cauchy–Born model for force-consistent a/c couplings, while this need
not be the case in two dimensions. As a first step to showing that this can lead to an
instability in two dimensions, we establish another representation of Hqnl

F .
Lemma 7.3. Under the conditions of Lemma 7.2, we have

(7.11) 〈Hqnl
F u, u〉 = 〈Hc

Fu, u〉+ 2
(
c̃
(1)
1 − c̃

(−1)
1

)
〈K0u, u〉+

∑
ξ∈Λ

X̂ξ(D
2u(ξ)),

where X̂ξ are quadratic forms of D2u (not necessarily sums of squares), with X̂ξ = 0
for ξ ∈ Λc, and

〈K0u, u〉 :=
∑

ξ∈Λ(0)

D2D1u(ξ)D1u(ξ).

Proof. From Lemma 7.2 we have

〈Hqnl
F u, u〉 − 〈Hc

Fu, u〉 −
∑
ξ∈Λ

X̃ξ(D
2u(ξ))

=
(
c̃
(1)
1 − c1

) ∑
ξ∈Λ(0)

(
|D1u(ξ + a2)|2 − |D1u(ξ)|2

)

+
(
c̃
(−1)
1 − c1

) ∑
ξ∈Λ(0)

(
|D1u(ξ + a5)|2 − |D1u(ξ)|2

)

=
(
c̃
(1)
1 − c1

) ∑
ξ∈Λ(0)

(
D1u(ξ + a2)−D1u(ξ)

)(
D1u(ξ + a2) +D1u(ξ)

)

+
(
c̃
(−1)
1 − c1

) ∑
ξ∈Λ(0)

(
D1u(ξ + a5)−D1u(ξ)

)(
D1u(ξ + a5) +D1u(ξ)

)

=
(
c̃
(1)
1 − c1

) ∑
ξ∈Λ(0)

D2D1u(ξ) (2D1u(ξ) +D2D1u(ξ))

+
(
c̃
(−1)
1 − c1

) ∑
ξ∈Λ(0)

D5D1u(ξ) (2D1u(ξ) +D5D1u(ξ))

= (c̃
(1)
1 − c̃

(−1)
1 )

∑
ξ∈Λ(0)

D2D1u(ξ)D1u(ξ)
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− (c̃
(−1)
1 − c1)

∑
ξ∈Λ(0)

D5D2D1u(ξ)D1u(ξ) + · · · ,

where “· · · ” stands for some sum of squares of D2u(ξ).
Summation by parts,∑

ξ∈Λ(0)

D5D2D1u(ξ)D1u(ξ) = −
∑

ξ∈Λ(0)

D5D2u(ξ)D4D1u(ξ),

completes the proof.

7.2. Nonexistence of a universally stable method in two dimensions.

Lemma 7.3 suggests that, unless c̃
(1)
1 − c̃

(−1)
1 = 0, there is a discrepancy between

Hqnl
F and Hc

F that is not a quadratic in D2u (and, as will be shown in section 7.3,

unavoidably leads to an instability). We next establish that in fact c̃
(1)
1 − c̃(−1)

1 �≡ 0 for
a large family of a/c schemes, which not only includes examples from section 6.3 but
also all geometric reconstruction–type variants [7, 25]. Below, we also present explicit
calculations for the three methods from section 6.3.

Proposition 7.4. Consider the following generalization of the geometric recon-
struction a/c (GRAC) method [25]:

(7.12) Ṽ (g) =

L∑
�=1

w�V (C�g),

where w� ∈ R, w� �= 0, and C� ∈ R
6×6 (� = 1, . . . , L). Assume that it satisfies

the force- and energy-consistency conditions (6.6), (6.7). Further, assume hexagonal
symmetry (6.4) of V , with α2 = α3 = 0.

Then there exist p0, p1 ∈ R (depending on w�,C�) such that p0 − p1 = 1 and

c̃
(1)
1 − c̃

(−1)
1 = p0α0 + p1α1.

In particular, there exists no choice of method parameters w�,C� such that c̃
(1)
1 −

c̃
(−1)
1 = 0 for all parameters (α0, α1).

Proof. Step 1 (reduction to a GRAC). Consider a method with interface site
potential

(7.13) ˜̃V (g) := V (Bg),

where B :=
∑L

�=1 w�C�. We show that it is energy and force consistent and, moreover,

〈δ2Ṽ (FR)u, u〉 − 〈δ2 ˜̃V (FR)u, u〉 is a sum of squares of D2u (and hence c̃
(1)
1 − c̃

(−1)
1 is

the same for both methods).
Indeed, substituting V (g) = v0 +f ·g into the energy consistency condition (6.7)

yields

v0

(
L∑

�=1

w� − 1

)
+ f · (BFR− FR) = 0 ∀v0 ∈ R, ∀f ∈ R

6, ∀F ∈ R
2.

Hence we get
∑L

�=1 w� = 1 and BFR = FR for all F. These identities make it
straightforward to verify the energy and force consistency of (7.13), given the energy
and force consistency of (7.12).
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Finally, to show that
〈(
δ2Ṽ (FR) − δ2 ˜̃V (FR)

)
u, u

〉
is a sum of squares of D2u,

compute

(7.14) δ2Ṽ (FR) =

L∑
�=1

w�C
�
�HC�,

where H := δ2V (FR) ∈ R
6×6 is the hessian of V . We apply the identity

w�C
�
�HC� + wjC

�
jHCj = (w� + wj)

(w�C�+wjCj

w�+wj

)�
H
(w�C�+wjCj

w�+wj

)
+

wjw�

w�+wj
(C� − Cj)

�H(C� − Cj)

to (7.14) L− 1 times, noticing that the finite difference operator (C� − Cj)Du is zero
on all affine functions and hence can be represented as a sum of second differences.

As a result, we express δ2Ṽ (FR) as δ2 ˜̃V (FR) plus squares of second differences.
Step 2 (proof for a GRAC). It is now sufficient to establish this proposition for a

simpler method (7.13). Using the rules (6.9)–(6.11), we can express

c̃
(1)
1 − c̃

(−1)
1 = − 1

3 (α0 + 4α1) +
˜̃V1,3 +

˜̃V2,3 +
˜̃V2,4 − ˜̃V4,6 − ˜̃V5,6 − ˜̃V5,1,

which implies linearity of c̃
(1)
1 − c̃(−1)

1 with respect to α0 and α1, that is, c̃
(1)
1 − c̃(−1)

1 =
p0α0 + p1α1.

To see that p0 − p1 = 1, choose coefficients α0 = 1 and α1 = −1, i.e., so that

p0 − p1 = c̃
(1)
1 − c̃

(−1)
1 . In this case the hessian of V is given by

(7.15) H = δ2V (FR) =

⎛
⎝

−1 1 0 0 0 1
1 −1 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 −1 1
1 0 0 0 1 −1

⎞
⎠

and δ2 ˜̃V = B�HB. Next, denote the column vectors of B as bi ∈ R
6 and hence express

c̃
(1)
1 − c̃

(−1)
1 = 1 + b�1Hb3 + b�2Hb3 + b�2Hb4 − b�4Hb6 − b�5Hb6 − b�5Hb1

(here we used 1
3 (α0 + 4α1) = −1).

Energy consistency (6.7) implies
∑6

i=1(Fai)bi = (Faj)
6
j=1 (we refer the reader to

[25] for details). Using this identity with F = 2
3 (a6 + a1)

� and with F = 2
3 (a2 + a3)

�

allows one to express

b1 = b3 + b4 − b6 + (1, 0,−1,−1, 0, 1)�,

b2 = b5 + b6 − b3 + (0, 1, 1, 0,−1,−1)�.

Substituting these expressions into c̃
(1)
1 − c̃

(−1)
1 yields, after all cancellations,

c̃
(1)
1 − c̃

(−1)
1 = 1 + (1, 0,−1,−1, 0, 1)H(b3 − b5) + (0, 1, 1, 0,−1,−1)H(b3 + b4),

which equals identically 1 once (7.15) is used.
Remark 7.5. Suppose that (in some practical problem) F = F0 is fixed and given

a priori.
1. One can then consider energy-consistent methods with ghost force correction,

such as in [19] (i.e., methods that satisfy (6.6) only for F = F0). Since we do not
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explicitly use force consistency (6.6) in the proof, Proposition 7.4 would also be valid
for such methods.

2. Nevertheless, it is possible to precompute c̃
(1)
1 − c̃

(−1)
1 and subtract the term

1
2 (c̃

(1)
1 − c̃

(−1)
1 )((g2 − g3)

2 − (g5 − g6)
2) from Ṽ (g), thus correcting the error in c̃i(ξ).

However, beyond the nearest-neighbor planar interface scalar setting (which yields
an interesting analytical study but is uninteresting for actual applications), it may
not be easy to precompute these coefficients, and the practicality of this approach is
therefore questionable.

3. For the three concrete schemes we introduced in section 6.3, in the fully
symmetric case with α2 = α3 = 0, we obtain the following formulas (see [22, Appendix
A.3] for proofs):

〈Hqceu, u〉 = 〈Hau, u〉+ α0 + 4α1

3

∑
ξ∈Λ(0)

(
|D1u(ξ)|2 − |D1u(ξ + a2)|2

)
,

〈H lrfu, u〉 = 〈Hau, u〉−α1

∑
ξ∈Λ(0)

(
|D1u(ξ)|2 − |D1u(ξ + a5)|2

)
+
∑

ξ∈Λ(0)

X lrf(D2u(ξ)),

〈Hg23u, u〉 = 〈Hau, u〉+ (α0 + 2α1)
∑

ξ∈Λ(0)

(
|D1u(ξ)|2 − |D1u(ξ + a2)|2

)

+
∑

ξ∈Λ(0)

Xg23(D2u(ξ)).

7.3. Instability. It is fairly straightforward to see that γ(K0) = γ(−K0) < 0
(cf. (7.11)). In this section we will show that the strain gradient correction (third
group in (7.11)) cannot improve this indefiniteness of K0, which will immediately
imply the instability result (Corollary 7.7).

The strain gradient correction is clearly bounded by an operator of the form

(7.16) 〈Su, u〉 :=
∑

ξ∈Λ(0)

|D2u(ξ)|2,

that is, |X̂ξ(D
2u)| ≤ C|D2u(ξ)|2. We therefore consider generic operators of the form

(7.17) 〈Kκu, u〉 := 〈K0u, u〉+ κ〈Su, u〉.

We will show that Kκ is indefinite, independent of the choice of κ, and hence inde-
pendent of the form the strain gradient correction X̂ξ takes. Note that this result is
also a preparation for our analysis of the 2D analogue of the stabilization (5.5).

Lemma 7.6. There exists a constant c > 0 such that

(7.18) inf
u∈W0

‖Du‖�2=1

〈Kκu, u〉 =: λκ ≤ − c

(κ+ 1)2
.

Proof. To obtain this bound, we make a separation of variables ansatz,

u(ξ) = u(ma1 + na2) = αmβn,

and we define α′
m := αm+1−αm, α

′′
m := αm+1−2αm+αm−1, and analogous notation

for β.
Next, let A,B ∈ C∞(R) be compactly supported with B(0) = 1, and let B′(0) =

1, B′′(0) = 0.
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Let N ∈ N, and define αm := A(m/N) and βn := B(n/N); then simple scaling
arguments show that, for N ≥ N0 (sufficiently large),

β′
0 ≈ N−1, |β′′

0 | � N−4,

‖α‖2�2 ≈ N‖A‖2L2, ‖α′‖2�2 ≈ N−1‖A′‖2L2, ‖α′′‖2�2 ≈ N−3‖A′′‖2L2 ,

and analogous bounds for β in terms of B. Here and for the remainder of the proof,
“≈” indicates upper and lower bounds up to constants that are independent of κ,N .

With these definitions and derived properties we obtain (after some work) that

〈K0u, u〉 = −β′
0‖α′‖2�2 ≈ −N−2,

〈Su, u〉 ≈ |β0|2‖α′′‖2�2 + |β′
0|2‖α′‖2�2 ≈ N−3,

‖Du‖2�2(Λ) ≈ ‖α′‖2�2‖β‖2�2 + ‖α‖2�2‖β′‖2�2 ≈ 1,

that is,

λκ ≤ 〈Kκu, u〉
‖Du‖2�2

≤ −C1N
−2 + C2κN

−3,

where C1, C2 > 0 depend on A,B but are independent of κ and of N (provided
N ≥ N0).

If κ = 2C1

3C2
N0 =: κ0, choosing N = N0, we obtain λ(κ) ≤ −C1

3 N
−2
0 .

For κ > κ0, let N = 3C2

2C1
κ; then N ≥ N0, and this implies λκ ≤ − 4

27C
3
1C

−2
2 κ−2.

This completes the proof.
We can deduce the following instability result. Ignoring the (nontrivial) technical

conditions, the result can be read as follows: if the error in the coefficients c̃
(m)
1 does

not cancel at a critical strain G (where Ha
G becomes unstable), then the QNL method

will necessarily predict a reduced critical strain with an O(1) error. That is, the critical
deformation G cannot be predicted with arbitrarily high accuracy by the QNL method.
See section 2.3.1 for further discussion of this issue.

Corollary 7.7. Consider the hexagonally symmetric case (6.4) with α2 = α3 =
0. Suppose, moreover, that

(i) γ(Ha
0 ) = 0, and

(ii) c̃
(1)
1 (0)− c̃

(−1)
1 (0) �= 0.

Then, γ(Hqnl
0 ) < 0.

In particular, γ(Hqnl
G ) < 0 for sufficiently small |G|.

Proof. The symmetry assumptions and (i) imply that Ha
0 = Hc

0 = 0. Therefore,
applying (7.11) we obtain that

〈Hqnl
0 u, u〉 ≤ 2(c̃

(1)
1 − c̃

(−1)
1 )〈K0u, u〉+ κ〈Su, u〉

for some κ > 0. Lemma 7.6 implies that γ(Hqnl
0 ) < 0.

Remark 7.8. 1. In the above corollary, (i) is an assumption on V , whereas (ii)
is the assumption on an a/c scheme. We showed in section 7.4 that (ii) is generically
satisfied.

2. Our numerical investigations (sections 8.1 and 8.2) indicate that similar results
hold for more general V and replacing F = 0 with general F, in particular dropping
significantly simplifying condition α2 = α3 = 0. It does not, however, appear straight-
forward to extend our analysis.
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7.4. Stabilizing the 2D QNL method. To conclude our analysis of the 2D
case, we explore the issue of stabilization. Let S be given by (7.16); then we define
the stabilized QNL energy functional

(7.19) Estab(y) := Eqnl(u) + κ〈Su, u〉

for some κ ≥ 0.
A consequence of Corollary 7.7 is that (under its technical conditions), for any

fixed κ, if γ(Ha
G) = 0, then γ(Hstab

G ) < 0, that is, the critical deformation G can still
not be predicted with arbitrarily high accuracy. However, there is some hope that the
error can be controlled in terms of κ. To that end, we first show that Lemma 7.6 is
in fact sharp.

Theorem 7.9. Let Kκ and λκ be defined by (7.17); then there exist constants
c1, c2 > 0 such that

(7.20) − c1
(κ+ 1)2

≤ λκ ≤ − c2
(κ+ 1)2

∀κ ≥ 0.

Proof. The upper bound has already been established in Lemma 7.6, and hence
we only have to show that it is sharp. For κ ≤ 1, the lower bound is obvious, and
hence we assume that κ > 1.

We first (crudely) estimate

〈Kκu, u〉 ≥
∑

ξ∈Λ(0)

(
D2D1u(ξ)D1u(ξ) + κ

6∑
i=1

|DiD1u(ξ)|2
)

≥
∑

ξ∈Λ(0)

(
− 1

4κ |D1u(ξ)|2 + κ|D2
1u(ξ)|2

)
.

If we can prove the trace inequality

(7.21) ‖D1u‖2�2(Λ(0)) ≤ C1

(
κ2‖DD1u‖2�2(Λ(0)) + κ−1‖Du‖2�2(Λ)

)
for some constant C1, which can equivalently be rewritten as

− 1
4κ

∥∥D1u
∥∥2
�2(Λ(0))

+ κ
∥∥DD1u

∥∥2
�2(Λ(0))

≥ − c1
κ2 ‖Du‖2�2(Λ),

then the stated result follows.
Proof of (7.21). It turns out that (7.21) is a consequence of the embedding

Ḣ1(R2) → Ḣ1/2(R). To make this precise we resort to Fourier analysis. Let

û(k) :=
∑
ξ1∈Z

u(ξ1, 0)e
ikξ1 ;

then û is a periodic smooth function on (−π, π) and the following bounds hold:

‖D1u‖2�2(Λ(0)) ≈
∫ π

−π

|k|2|û|2 dk,

‖D2
1u‖2�2(Λ(0)) ≈

∫ π

−π

|k|4|û|2 dk,

‖Du‖2�2(Λ) �
∫ π

−π

|k||û|2 dk.(7.22)



(IN-)STABILITY AND STABILIZATION OF A/C METHODS 1285

The first two bounds are completely standard. The bound (7.22) is a discrete variant
of a standard trace inequality (see [22] for a proof).

We thus deduce that to prove (7.21) it is sufficient to show that there exists C′
1

such that

k2 ≤ C′
1

(
κ2k4 + κ−1|k|

)
∀k ∈ [−π, π].

But, in fact, it is easy to see that k2 ≤ max(κ2k4, κ−1|k|), and hence (7.21) fol-
lows.

We can now refine the discussion at the beginning of the section to obtain the
following result.

Corollary 7.10. Let V have hexagonal symmetry (6.4), let α2 = α3 = 0, and

let c̃
(1)
1 − c̃

(−1)
1 �= 0; then there exist constants c1, c2 > 0 such that

γ(Ha
0 )−

c1
κ2

≤ γ(Hqnl
0 + κS) ≤ γ(Ha

0 )−
c2
κ2
.

Proof. The result is an immediate consequence of Theorem 7.9.
To explain the relevance of Corollary 7.10, consider the setting of section 2.3.1

and suppose, for the sake of argument, that the result holds at the critical strain,

γ(Ha
G(t∗))−

c1
κ2

≤ γ(Hqnl
G(t∗) + κS) ≤ γ(Ha

G(t∗))−
c2
κ2
.

It is then easy to see that the error in the critical strain will be of the order

(7.23) |tκ∗ − t∗| ≈
1

κ2
.

Therefore, if we wish to admit at most an O(ε) error in the critical strain, then we
must accordingly choose κ = O(ε−1/2). Unfortunately, this causes a larger consistency
error of the stabilized QNL method, which may again cause a feedback to cause a
larger error in the critical strain. In addition, if κ � ‖∇2V (FR)‖, then the hessian
operator has increased stiffness.

Both of these effects require further investigation in future work that would also
need to incorporate inhomogeneous deformations. However, we note here already that
our numerical experiments in section 8 indicate that already very moderate values
of κ lead to fairly substantial quantitative improvements in the stability of the a/c
coupling, and therefore the two concerns discussed above may not be of immediate
practical relevance.

8. Numerical tests.

8.1. Regions of stability. We have analytically established the instability and
stabilization results for the case when only nearest-neighbor bonds interact (i.e., as-
suming α2 = α3 = 0). In this subsection we will study these issues in the general
hexagonally symmetric case (6.4), admitting α2, α3 �= 0. The above analytic results
cannot be readily extended to this case since Ha

F �= Hc
F, and hence we will use a

seminumeric approach.
We start with a characterization of the stability of Ha

F .
Lemma 8.1. Ha

F is stable if and only if

β1 := α0 + α1 − α2 − α3 > 0,

β2 := α0 + α1 + α2 + α3 > 0,

β3 := 2α0 + 2α1 + 4α2 + α3 > 0.
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Fig. 5. Stability regions in the hexagonally symmetric case, as described in section 8.1. The
exact (atomistic) stability region is the triangle, and the stability regions of the a/c methods are
proper subsets of it. The last method, lrf+s(0.5), is the stabilized coupling (8.1) with κ = 0.5.

Proof. See [22, Lemma 8.1] for the proof.
The above lemma states that the region of stability of Ha

F is the first octant of the
3D space of parameters (β1, β2, β3). We will thus study the extent to which different
a/c methods reproduce this exact stability region. For ease of visualization, we restrict
ourselves to a hyperplane β1 = β3 and map the stability region into a triangle

{(x, y) : x > 0, y > 0, x+ 2y < 1}

by letting β1 = β3 = y/(1− x− 2y) and β2 = x/(1− x− 2y).
We compute the boundary of the stability region semianalytically in the following

way. First, due to translational symmetry in ξ1, it is sufficient to (formally) consider
the test functions of the form u(ξ1, ξ2) = eiξ1k1 ū(ξ2), where k1 ∈ (−π, π) and ū ∈
W0(Z).

1 This reduces the problem to testing for positive definiteness of five-diagonal
symmetric operators depending on k1 ∈ (−π, π). Because the operator coefficients
on different diagonals for ξ2 < −1 and for ξ2 > 1 are constant, these operators can
be inverted analytically. Hence, we used Mathematica to analytically check whether
there are negative eigenvalues of these operators and used a numerical procedure of
minimizing the smallest eigenvalue over k1 ∈ (−π, π).

The regions of stability of different a/c methods are plotted in Figure 5. We
observe that none of the methods reproduces the exact stability region, which is
consistent with the results in the case α2 = α3 = 0 (cf. Corollary 7.7). Also, we see
that the stabilized local reflection method

(8.1) 〈H lrf+s(κ)
F u, u〉 := 〈H lrf

F u, u〉+ κ(|α0|+ |α1|+ |α2|+ |α3|) 1
6

6∑
i=1

|DiDi+2u|2

1To rigorously justify this step, one would need to introduce a cutoff to these test functions to
ensure that they belong to W0(Λ).
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Fig. 6. Stability test for C = 1, D = −0.5, as described in section 8.2. The black disks indicate
which eigenmodes (u1-component) are plotted in (b), (c).

with κ = 0.5 has an improved (but not exact) stability region.

8.2. Critical eigenmodes. We conclude our investigations with some further
numerical tests, which aim to give a preliminary assessment of the effect of the stability
error on practical computations. Our experiments can only be considered preliminary
since we consider only a limited class of interactions and, due to the significant com-
putational cost involved, we do not include extensive tests on domain size dependence.

8.2.1. Stability gap. In these experiments we admit vectorial deformations
y : Λ → R

2, but otherwise we use the same structure as atomistic and QNL models.
The potential used in our numerical experiments is a modified EAM potential,

V (g) :=
∑
ρ∈R

φ(|gρ|) +G

(∑
ρ∈R

ψ(|gρ|)
)
+D

6∑
j=1

(rj · rj+1 − 1/2)2, where

φ(s) := e−2A(s−1) − 2e−A(s−1), ψ(s) := e−Bs, and

G(s) := C
(
(s− s0)

2 + (s− s0)
4
)
.

Throughout, we fix the parameters A = 3, B = 3, s0 = 6e−0.95B, but we vary C and
D between experiments.

Instead of a half-space, we perform our calculations in a hexagonal domain with
sidelength 18 atomic spacings and Dirichlet boundary conditions. The atomistic re-
gion is a concentric hexagon with sidelength 6 atomic spacings. We consider only the
GRAC-2/3 method, which is the only force-consistent method that we know of for
this setup.

Applying uniform expansion F(t) = tI as load, we obtained the results shown in
Figure 6 for parameters C = 1, D = −0.5 and in Figure 7 for parameters C = 1, D =
0.

In Figure 6(a) we observe a small but clear gap in the stability constants where
they cross zero. Realistically, given the smallness of the gap, we must question whether
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Fig. 7. Stability test for C = 1, D = 0, as described in section 8.2. The black disks indicate
which eigenmodes (u1-component) are plotted in (b), (c).

it is genuine or a numerical error such as a domain size effect. The plots in Fig-
ures 6(b), (c) suggest that the gap is genuine since the unstable QNL eigenmode is
concentrated on the interface and therefore of a different “type” than the unstable
eigenmode of the atomistic model.

Interestingly, in Figure 7, we still observe the same characteristic difference in the
eigenmodes, but the stability gap is essentially absent. We can only conjecture that,
analytically, a gap must be present, but numerically it is too small to detect reliably.
And indeed, this means that it may be of little practical relevance.

The two examples we have shown are prototypical for the entire parameter range
C ∈ [−1, 1] and D ∈ [−1, 1] that we tested. Given how small the stability errors seem
to be in practice (at least in these experiments), this raises the question of whether
one can quantify them, instead of trying to eradicate them completely.

8.2.2. Stabilization. For the parameters C = 1, D = −0.5, where we observed
a visible stability gap in Figure 6, we now consider the stabilized GRAC-2/3 scheme
(7.19) with S given by (7.16) and κ ≥ 0. Repeating the numerical experiment of the
previous section we obtain the results shown in Figure 8 for κ = 0.1 and in Figure 9
for κ = 1.

In both experiments we observe a much smaller stability gap (for κ = 1 no gap
is visible with the naked eye), and this is accompanied by a marked change in the
qualitative behavior of the critical eigenmode. In both cases, the stabilization has
changed the interface supported eigenmode into a bulk eigenmode, which one might
consider “smooth.” This indicates that the stability gap has closed.

For the stronger stabilization κ = 1, the critical QNL eigenmode is now identical
to the atomistic eigenmode, while for κ = 0.1 the QNL eigenmode has a shorter wave
length. The existence of this “weaker” eigenmode explains the larger stability gap for
κ = 0.1 compared with κ = 1.0.

9. Conclusion. The stability of QNL-type a/c coupling mechanisms in dimen-
sions greater than one remains an interesting issue. Our results in the present paper
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Fig. 8. Stability test for C = 1, D = −0.5, κ = 0.1, as described in section 8.2. The black discs
indicate which eigenmodes (u1-component) are plotted in (b), (c).

Fig. 9. Stability test for C = 1, D = −0.5, κ = 1, as described in section 8.2. The black discs
indicate which eigenmodes (u1-component) are plotted in (b), (c).

indicate that it is unlikely that there exists a universally stable variant (except in one
dimension), but that suitable stabilization mechanisms must be employed.

We have proposed and analyzed a specific stabilization mechanism in a simplified
setting. Our results indicate that this is a promising avenue to explore further, but
that much additional work is required to establish this as a practical computational
scheme.

We recall, however, that in section 8.2 we also raised the question of whether
stabilization is required at all in practice since the stability errors, at least for the
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class of interactions we considered there, appear to be fairly small. However, it is
unclear to us at this point how one might quantify such a statement.

Appendix.

A.1. Details of the instability example in section 3.2. This section de-
scribes the details of the calculation in section 3.2.

The second variation of the atomistic energy gives

〈Hau, u〉 =(2− 2α+ 8β − 8γ + 16δ)
∑
ξ∈Z

|D1u(ξ)|2 + (α− 2β + 18γ − 12δ)
∑
ξ∈Z

|D2
1u(ξ)|2

+ (−8γ + 2δ)
∑
ξ∈Z

|D3
1u(ξ)|2 + γ

∑
ξ∈Z

|D4
1u(ξ)|2,

which can be written in short form as

〈Hau, u〉 = A1

∑
ξ∈Z

|D1u(ξ)|2 +A2

∑
ξ∈Z

|D2
1u(ξ)|2 +A3

∑
ξ∈Z

|D3
1u(ξ)|2 +A4

∑
ξ∈Z

|D4
1u(ξ)|2.

By [10] (also Li and Luskin [11]), we have

γ(Ha
F) = min

0≤s≤4
A1 +A2s+ A3s

2 +A4s
3.

With the parameters in section 3.2, α = −0.99, β = 0.1, γ = 0.15, δ = −0.2, we
obtain that γ(Ha

F) = 0.02.
Similarly, the second variation of the QNL energy is

〈Hqnlu, u〉

=(2 − 2α+ 8β − 8γ + 16δ)
∑
ξ∈Z

|D1u(ξ)|2 + (α− 2β + 18γ − 12δ)
∑
ξ≤−4

|D2
1u(ξ)|2

+ (α− 2β + 17γ − 12δ)|D2
1u(−3)|2 + (α− 2β + 15γ − 11δ)|D2

1u(−2)|2

+ (α+ 6γ − 5δ)|D2
1u(−1)|2 + (−8γ + 2δ)

∑
ξ≤−4

|D3
1u(ξ)|2 + (−6γ + 2δ)|D1u(−3)|2

+ (−2γ + δ)|D1u(−2)|2 + γ
∑
ξ≤−4

|D4
1u(ξ)|2,

which gives the explicit expression for the coefficients A, Bξ, Cξ, and D in (3.3).
γ(Hqnl) can be estimated by numerical calculation. For u supported in [−500, 500],
we have γ(Hqnl) < −0.005. The unstable mode is plotted in Figure 10.

A.2. Details of the 1D QNL numerical test in section 3.3. This section
describes the details of the setup of the numerical test reported in section 3.3.

In these experiments we use R = {±1,±2} and the EAM-type interaction poten-
tial

V (g) :=
∑
ρ∈R

φ(|gρ|) +G

(∑
ρ∈R

ψ(|gρ|)
)
, where

φ(s) := e−2A(s−1) − 2e−A(s−1),

ψ(s) := e−Bs, and

G(s) := C
(
(s− s0)

2 + (s− s0)
4
)
.
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Fig. 10. (a) unstable mode of u supported in [−500, 500]; (b) log(|u|).

Throughout, we use the parameters A = 3, B = 3, C = 5, and s0 = 2e−0.95B +
2e−1.9B.

Next, we redefine Eqnl with finite atomistic and continuum regions. Fix K,N ∈ N

and a macroscopic strain F > 0. Admissible deformations y : Z → R are those for
which D1y(ξ) > 0 for all ξ and y(ξ) = Fξ for |ξ| ≥ N . Let WN := {u ∈ W |u(ξ) = 0
for |ξ| ≥ N}; then the admissible deformation space is Fx + WN .

For any admissible deformation, we then define

Eqnl(y) :=

K−2∑
ξ=−K+2

[
V (Dy(ξ))− V (FR)

]

+
−K+1∑
ξ=−K

[
V (D̃−y(ξ))− V (FR)

]
+

K∑
ξ=K−1

[
V (D̃+y(ξ))− V (FR)

]

+

∫ −K−1/2

−N

[
W (∇y)−W (F)

]
+

∫ N

K+1/2

[
W (∇y)−W (F)

]
,

where D̃+ = (D−2, D−1, D1, 2D2) and D̃
− = (2D−1, D−1, D1D2).

We will also compare the results against an atomistic model restricted to a finite
domain (by simply restricting the admissible deformations as above), and against the
reflection method defined in section 4, which can be analogously formulated on the
finite domain.

Moreover, given parameters α, β ∈ R, define an external force

f(ξ) := β(1 + ξ2)−(α+1)/2.

Finally, we discretize the continuum region using P1 finite elements. Motivated by
the analysis in [17], we choose a scaling for the atomistic region size and a scaling for
the mesh size, according to the decay of the external force: K = �N (α−1/2)/(α+1/2)�
and h(x) ≈ (|x|/K)

2
3 (α+1). We create the finite element mesh using the algorithm

described in [17]. Let Wh denote the finite element displacement space of piecewise
affine functions extended by zero outside [−N,N ].

Using Newton’s method, we compute a continuous path of equilibria of the energy

Eqnl(yF)−
∑
ξ∈Z

f(ξ) · yF(ξ), yF ∈ Fx+ Wh,
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starting with F = 1 and incrementing F in small steps, using the previous step as the
starting guess. Using a bisection-type approach, we can define the critical strain Fqnl

to be the smallest value of F for which δ2Eqnl(yF) ceases to be positive definite on Wh.
Analogously, we define the critical strains for the reflection method, Frfl, and for the
atomistic model restricted to WN , Fa.

The exact critical strain, F∗, is defined to be the critical strain for the unrestricted
atomistic model. Since we have shown that the reflection method is universally stable,
which is extended to a nonlinear deformation in [17], we compute F∗ by extrapolating
the computed critical Frfl for increasing domain sizes. The results for increasing
domain sizes N , with corresponding choices of K and the finite element mesh, are
displayed in section 3.3.
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