
Accelerating crystal structure prediction by machine-learning interatomic potentials
with active learning

Evgeny V. Podryabinkin,1, ∗ Evgeny V. Tikhonov,1, 2 Alexander V. Shapeev,1 and Artem R. Oganov1, 3

1Skolkovo Institute of Science and Technology,
Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia

2Moscow State University,
Leninskie Gory, Moscow 119991, Russia

3Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

(Dated: November 29, 2018)

In this letter we propose a new methodology for crystal structure prediction, which is based on the
evolutionary algorithm USPEX and the machine-learning interatomic potentials actively learning
on-the-fly. Our methodology allows for an automated construction of an interatomic interaction
model from scratch replacing the expensive DFT with a speedup of several orders of magnitude.
Predicted low-energy structures are then tested on DFT, ensuring that our machine-learning model
does not introduce any prediction error. We tested our methodology on a problem of prediction of
carbon allotropes, dense sodium structures and boron allotropes including those which have more
than 100 atoms in the primitive cell. All the the main allotropes have been reproduced and a new
54-atom structure of boron have been found at very modest computational efforts.

Crystal structure prediction consists in searching for
atomic structures with lowest thermodynamic potential
[1]. Usually theoretical methods of the prediction involve
two components: an algorithm sampling the configura-
tion space and a relaxation algorithm which finds local
minima of the relevant thermodynamic potential (e.g., in-
ternal energy). For example, the USPEX algorithm [2–4]
is based on evolutionary structure optimization. The re-
laxed structures are sorted according to their energies,
and the lowest-energy structures are used for producing
the next generation of the evolutionary algorithm. This
process of producing and relaxing structures continues
generation-by-generation, until the lowest-energy struc-
ture remains unchanged for a number of generations.

The success of crystal structure prediction largely de-
pends on the choice of the Hamiltonian. Density func-
tional theory (DFT) offers a sufficient accuracy in re-
producing the sophisticated interaction of real atoms in
crystals, however, DFT has a high computational cost.
Indeed, the complexity of DFT calculations grows cu-
bically with the number of atoms, and in the course of
structure relaxation such calculations are repeated many
times. Thus, structure relaxation typically takes more
than 99.9% of the total CPU time of the prediction when
using DFT. Therefore, in practice, prediction of a crystal
structure with DFT is usually limited to systems with a
few tens of atoms. Furthermore, many types of calcu-
lations are unfordable with DFT: for example, crystal
structure prediction at finite temperatures, were proper
sampling of the phase space is needed for computing en-
tropies.

Empirical interatomic potentials—a very computation-
ally efficient alternative to DFT—can rarely be useful for
predicting new materials, because their algebraic form
is limited to reproducing physical properties of a few

known structures that they were specifically designed for.
A promising alternative to the empirical potentials is
the so-called Machine-Learning Interatomic Potentials.
They typically have a flexible functional form that al-
lows for systematic improvement of their accuracy by
the cost of computational efficiency. Several approaches
to developing machine-learning potentials exist: neural
network-based potentials [5–8], Gaussian approximation
potentials [9–11] and potentials based on linear regres-
sion, e.g., [12] and [13]. In particular, neural-network
potentials have been used to explore transitions between
different phases of Si for a range of pressures and tem-
peratures [14]. Machine learning methods have been suc-
cessfully used for crystal structure prediction problems.
For example, an idea to fit a potential while structure
search was suggested in [15]; in [16] the authors apply
active-learning techniques to predict the surface recon-
structions; in [17] Bayesian optimization was used for
the problem of prediction of molecular compounds.

In the present paper we propose a novel approach to
the application of machine-learning potentials to crys-
tal structure prediction. It is based on the moment ten-
sor potentials (MTPs) [13] as the machine-learning inter-
atomic interaction model. Briefly, MTPs assume a par-
titioning of the energy into contributions of each atom:
E =

∑
i Vi, where i goes through all atoms in the struc-

ture. Each Vi = V
(
ui

)
depends on the atomic neighbor-

hood ui defined as the collection of positions the atoms
relative to the i-th atom within a cutoff sphere of radius
Rcut. MTPs provide an analytical expression for Vi as
a linear combination of m basis functions Bj = Bj(ui)
with the fitting parameters θ = (θ1, . . . , θm):

Vi =

m∑
j=1

θjBj

(
ui

)
. (1)
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The number of basis functions, m, is chosen by empiri-
cally balancing the accuracy and computational efficiency
of the MTP. The basis functions satisfy all the physical
symmetries (in particular, rotation invariance and invari-
ance toward permutation of atoms of the same type) and
have explicit expressions for calculation of the forces and
stresses. The parameters θ in the simplest case are found
from the requirement that the predicted energies are the
DFT energies, E

(
x(k)

)
u Edft

(
x(k)

)
, on a set of configu-

rations that we call the training set. This yields a system
of linear algebraic equations on the coefficients θj :

m∑
j=1

θj

[
N∑
i=1

Bj

(
u
(k)
i

)]
︸ ︷︷ ︸

=:bj(x(k))

= Edft
(
x(k)

)
, (2)

which in the matrix notation we write as Aθ = ~Edft,
where

A =

 b1
(
x(1)

)
. . . bm

(
x(1)

)
...

. . .
...

b1
(
x(K)

)
. . . bm

(
x(K)

)
 . (3)

The system (2) is typically overdetermined, therefore its
solution is found from a least-square minimization prob-
lem as

θ := (A>A)−1A> ~Edft. (4)

There are two main ways to train and use a machine-
learning potentials. The first (classical) is to train them
at the offline stage and use it for calculation of the energy,
forces and stresses at the online stage. The biggest chal-
lenge associated with this approach is related to transfer-
ability of machine-learning potentials: they do not pro-
duce reliable predictions outside their training domain.
This appears a fatal weakness of them in the context of
crystal structure prediction: since we do not know the
crystal structures to be predicted, we cannot train a po-
tential on those structures.

The idea of active learning comes to rescue. An ac-
tive learning algorithm [18] can detect when an MTP
attempts to extrapolate outside its training domain and
include those extrapolative configurations in the train-
ing set. To formalize the concept of extrapolation, we
consider an arbitrary configuration x∗ and note that its
predicted energy can be expressed as a linear combina-
tion of the energies of configurations from the training
set:

E(x∗) =

m∑
j=1

θjbj(x
∗) = (b∗)> · θ =

= (b∗)>(A>A)−1A>︸ ︷︷ ︸
=:c

~Edft =

K∑
k=1

ckE
dft(x(k)). (5)

If at least one ck in (5) is larger than 1 by its abso-
lute value, then we consider the energy calculation as
linear extrapolation outside of the training domain; oth-
erwise, if |ck| ≤ 1 for all k, then we say that interpolation
within the training set takes place. In the case of in-
terpolation the calculated energy is always bounded by
the energy values from the training set (and therefore
is expected to be close to the DFT values), whereas ex-
trapolation may yield non-physically low or high values
of energy. To simplify the algorithm, we assume that
the training set size, K, equals to the number of basis
functions, m. Thus, to detect extrapolation while calcu-
lating E(x∗) we should additionally calculate ck, which
requires only one additional matrix-vector multiplication
A(A>A)−1b∗ = A−1b∗, provided that we store A−1 in our
computations. We emphasize that no additional DFT
calculations are required to detect extrapolation.

Our active learning approach consists of detecting and
including the extrapolative configurations to the training
set. Thus, for a configuration x∗ we compute the extrap-
olation grade that we define as γ(x∗) = maxk(|ck|), and
compare it to the tunable parameter γtsh > 1, which
we call the extrapolation threshold. If the extrapolation
grade is sufficiently high, γ(x∗) > γtsh, then the expen-
sive DFT calculation is performed and the configuration
is “learned”, otherwise the energy, forces and stresses are
calculated by the MTP (see Fig. 1). We always keep the
size of the training set constant, K = m. Therefore, af-
ter adding x∗ to the training set we eliminate x(k

∗) from
the training set, where k∗ is such that ck∗ is maximal by
its absolute value among all ck. It can be shown that
replacing configuration x(k

∗) becomes interpolative after
adding x∗ to the training set [18].

The described active learning procedure employs a part
of the maxvol algorithm [19] for finding the most lin-
early independent rows in a tall matrix, and it was shown
that this leads to the increase of |det(A)| by the factor of
γ(x∗) > γtsh > 1. In other words, we select the config-
urations so that they maximize |det(A)|. Such approach
is known as the D-optimality criterion [20] and is com-
monly used in machine learning and optimal experiment
design.

MTP that actively learns on-the-fly can be consid-
ered, effectively, as an interatomic interaction model (see
Fig. 1). We use this model as a replacement for DFT in
USPEX. Note that since the interatomic potential within
this model may slightly change when being retrained,
the relaxation method requires adaptation—we force the
BFGS algorithm used in relaxation [21] to perform one
gradient descent iteration once a learning event occurs.
It should be emphasized that the described selection al-
gorithm (and fitting procedure) is not limited to config-
urations with the same number of atoms; it allows us
to actively train a single model that works on structures
with different numbers of atoms.

When an MTP starts learning on-the-fly from the
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FIG. 1. The scheme of learning on-the-fly. An active selec-
tion algorithm estimates the degree of extrapolation for each
configuration sampled. If it is high then the configuration is
learned. After this, the energy, forces and stresses are calcu-
lated by MTP and returned to the relaxation process.

empty training set, the major part of DFT calculations
take place at the initial stage, while practically remain
unchanged later (see the blue curve in Figure 2). Such
behavior is explained by the following. Our selection
method unconditionally selects each configuration until
the training set size is less than the number of MTP pa-
rameters m. Next, the configuration x∗ enters into the
training set only if γ(x∗) > γtsh, i.e. its extrapolation
grade is larger than the threshold. Since initially the
configurational space is not well explored, the chance to
meet an extrapolative configuration at the initial stage of
learning on-the-fly is higher than on a later stage. Thus,
on a late stage the training set is selected from a se-
quence sampled from a large configurational space and
hence new extrapolative configurations appear rarely.

One can take advantage of this fact by performing
pre-exploration of the configurational space, thus signifi-
cantly decreasing the number of DFT calculations at the
initial stage. Since our selection method does not require
DFT data, the pre-exploration is done by sampling ran-
dom structures subject to a minimal distance constraint.
In our tests we generated a pool of 100 000 structures
with the different number of atoms. The initial training
thus comprises m (same as the number of MTP parame-
ters) configurations selected from the pool. This reduces
the number of DFT calculations by about a factor of 5
(compare the blue and green curve in Figure 2).

We have tested our methodology on finding the struc-
tures for three chemical elements: (1) carbon allotropes,
(2) sodium structures under pressure, (3) boron al-
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FIG. 2. Comparison of learning curves for pre-trained MTP
and for learning from scratch.

lotropes. In our tests no a priori information about the
low-energy structures was used. In all the three cases
we employ an MTP with about 800 parameters provid-
ing a balance between accuracy and computational effi-
ciency. Since our model reproduces DFT only approxi-
mately, the structures predicted with DFT and our model
may not coincide. Therefore, the structures with suffi-
ciently low energies (within 100 meV/atom of the lowest
energy) found with our method were relaxed with DFT.
All DFT calculations were performed with the VASP
package [22–24] at the generalized gradient approxima-
tion level of theory [25] using the projected augmented
wave wave method for describing effects of core electrons
[26, 27].

In the course of searching of carbon structures with 8
atoms in the unit cell our method has correctly predicted
all main allotropes: graphite, diamond and lonsdaleite.
More than 1.9·104 configurations were evaluated by MTP
whereas the number of DFT calculations was about 1300.
After learning on-the-fly, the MTP training error was 86
meV/atom. We note that the training error evaluated
on the actively selected training set is an overestimation
of the actual prediction error since the actively selected
configurations tend to sample more “extreme” parts of
the configurational space [18]. The error on the predicted
structures was less than 40 meV/atom.

Next we searched for sodium structures under pressure
in the range 120–300 GPa with up to 20 atoms in the unit
cell. For this purpose we executed our method with a sin-
gle MTP which correctly predicted all the known ground
state sodium structures [28–31] (namely, cI16, tI19, hP4,
provided in Supplemental Materials) within the speci-
fied pressure range. It is remarkable and reassuring that
MTP captures non-trivial physics here: hP4-Na is an
electride, i.e., can be described as an ionic salt made of
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Na+ cores and localized electron pairs, which play the
role of anions. We found it remarkable that MTP, based
only on nuclear positions, is able to describe this elec-
tride phase. About 1500 DFT calculations have been
done while learning on-the-fly, whereas the total number
of evaluated configurations was more than 2 ·106. In this
test the speedup of our method (which is equal to the ra-
tio between the number of DFT and MTP calculations)
is 100 times higher than in the previous, which indicates
a higher efficiency of our method when searching struc-
tures with more atoms.

In the third test we demonstrate an application of our
approach to one of the most challenging, in our opin-
ion, crystal structure prediction problems: finding the
allotropes of boron. Indeed, boron has an extremely com-
plex potential energy surface with large amount of local
mininima (i.e., large number of allotropes) and small en-
ergy differences between them. Moreover, some of al-
lotropes have more than 100 atoms in their primitive cell
[32–36], therefore, exhaustive search is virtually impos-
sible since the number of possible structures grows ex-
ponentially with the number of atoms. Up to now, all
theoretical attempts to predict the structure of β−boron
[32, 36–38] used experimental knowledge of lattice pa-
rameters and of positions of most boron atoms (the fully
occupied sites), only varying the occupation of the par-
tially occupied sites. Here we present the first attempt to
perform a fully theoretical and unconstrained prediction
of this structure, using no empirical information. The
success that we have achieved is remarkable and sets the
record of complexity of the predicted crystal structure.

In our work we were looking for boron allotropes with
1–60 and 105–108 atoms in the primitive cell. We started
from structures with one atom in the primitive cell, and
increased the number of atoms by one in each subsequent
run. At the 12th stage of the search the α-boron 12-atom
structure was found with MTP.

Despite the fact that the α-boron structure was cor-
rectly identified as the ground state, the training error
was 170 meV/atom. This error seems large, therefore,
we modified our procedure by adding the second actively
learning MTP. The first, reliable, MTP is used to screen
out the high-energy structures, whereas the second one
was introduced for accurate treatment of configurations
with sufficiently low energy per atom. Switching between
the reliable and accurate MTPs is done in a two-stage re-
laxation. At the first stage a configuration is relaxed with
a reliable MTP and is discarded if its energy is higher
than −5.5 eV/atom. Otherwise, the relaxation proceeds
with the accurate MTP. Active learning of the accurate
MTP is further restricted to low-energy structures by ap-
plying to the selection and training procedures the weight

W (x) = 1/(E(x)/N − Emin + 0.02)2,

where Emin = −6.705 eV/atom is the energy per atom
of α-boron, and N is the number of atoms in the con-

figuration x. That is, both sides of every equation (2)
are multiplied by W

(
x(k)

)
. Being trained only on low-

energy configurations the second MTP better reproduces
the potential energy surface near deep minima, but is not
suitable for high-energy structures.

The two-stage scheme yields the root-mean-square er-
ror of 11 meV/atom for the low-energy structures (we
have compared the MTP and DFT energies for the 100
lowest-energy structures we found). The total number of
DFT calculations required to train the two MTPs was
about 5000 while the total number of evaluated config-
urations exceeds 4 · 108. The best structures (with the
lowest energy) found with our method are shown in Fig-
ure 3. The data files for these structures are provided in
Supplemental Materials.

With our method we have found the best known 108-
atom structure of boron, which is a supercell of α-boron
(the same allotrope was also found among all the appro-
priate smaller structures). It confirms that our method is
able to treat large structures with more than 100 atoms in
the primitive cell. Furthermore, another predicted struc-
ture with 108 atoms in the unit cell has structural similar-
ity with β-boron [36] (in particular, it also contains fused
icosahedra with point defects and some non-icosahedral
atoms, refer to Supplemental Materials) and energy only
8 meV/atom higher than that of α-boron. In addition to
the 108-atom α-boron supercell structure, we have also
found β-boron approximants with 105, 106, 107, and 108
atoms in the primitive cell whose energies are 14, 2, 8,
and 8 meV/atom higher as compared to α-boron. These
configurations have structural similarity with the known
106 atomic β-boron approximant [36], in particular, they
also contain fused icosahedra with point defects and some
non-icosahedral atoms, refer to our Supplemental Mate-
rials. Moreover, our 106-atom structure has virtually the
same energy as provided in [36] (DFT energies differ by
less than 1 meV/atom). Interestingly, our calculations
found more than hundred β-boron-like structures with
close energies, which is a manifestation of its configura-
tional entropy. Also, in our calculations we have also
predicted correctly the γ-boron structure, recently dis-
covered theoretically and experimentally [33].

The USPEX+MTP calculation correctly reproduced
the lowest-energy Cccm structure with 26 atoms/cell and
also discovered a closely related tetragonal P 4̄2m struc-
ture with 52 atoms/cell and slightly lower energy. These
two structures are topologically very similar to the 52-
atom Pnn2 structure published in [39] and the 52-atom
Pnnn structure recently seen in experiments [40], the
fourth established pure boron allotrope. These struc-
tures are very similar to the tetragonal (P42/nnm) B50,
the first structurally characterized form of boron [41],
which was later found to be impure and stabilized by ni-
trogen and carbon atoms [42]. DFT predicts that all the
three 52-atom structures and the 26-atom structure are
dynamically stable at zero temperature and have very
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α-boron 
EDFT= –6.706 eV/atom 
Atoms: 12, 
Space group: R-3m,
Core-hours: 103 AL-MTP vs. 3·103 DFT
|EDFT – EMTP| = 28.6 meV/atom

γ-boron 
EDFT = –6.678 eV/atom
Atoms: 28, 
Space group: Pnnm,
Core-hours: 2·103 AL-MTP vs. 2.5·104 DFT
|EDFT – EMTP| = 58.1 meV/atom

EDFT = –6.667 eV/atom, 
Atoms: 54, 
Space group: Im-3,
Core-hours: 3·103 AL-MTP vs. 3.5·105 DFT 
|EDFT – EMTP| = 7.3 meV/atom

EDFT = –6.667 eV/atom, 
Atoms: 52, 
Space group: P-42m,
Core-hours: 3·103 AL-MTP vs. 3.2·105 DFT
|EDFT – EMTP| = 37.3 meV/atom

EDFT = –6.665 eV/atom, 
Atoms: 26, 
Space group: Cccm,
Core-hours: 2·103 AL-MTP vs. 2.1·104 DFT
|EDFT – EMTP| = 13.6 meV/atom

β-boron approximant
EDFT = –6.704 eV/atom,
Atoms: 106, 
Space group: P1,
Core-hours: 7·103 AL-MTP vs. 6.6·107 DFT 
|EDFT – EMTP| = 10.1 meV/atom

FIG. 3. The best (lowest-energy) structures found with our
method. The estimate for the time required to find these
structures on DFT is based on the number of configuration
threated by MTP in our search and the time required for
VASP to process all these structures on a single core. The ac-
tual time spent with DFT can be up to 10 times less than indi-
cated, because at early stages of structure relaxation cheaper
computational settings are usually applied.

close energies, within 8 meV/atom (all four structures
are provided in Supplemental Materials). However, MTP
“catches” only two of them: the Cccm and P -42m struc-
tures. Relaxation of Pnn2 and Pnnn structures results
in the 26×2-atom Cccm structure. This proves boron
to be a hard benchmark problem for crystal structure
prediction.

Another remarkable result of this work is the discov-
ery of a 54-atom metallic structure of boron, with energy
just 39 meV/atom higher than that of α-boron and 11
meV/atom higher than that of γ-boron. This structure

has an unexpectedly high symmetry, cubic (space group
Im-3), the point group of which is actually the highest
group that an icosahedron can have in any crystalline en-
vironment (m-3). The B12 icosahedron is connected to
the neighboring icosahedra only by two-center bonds—
this is what allows it to keep the highest symmetry al-
lowed for icosahedron in crystals. As a result, we can
identify in this structure the highly symmetric B84 units:
in their center is one B12 icosahedron, with each of its
atoms bonded by a two-center bond to a B6 pentagonal
umbrella. These B6-umbrellas can be viewed as frag-
ments of icosahedra; building this structure with com-
plete icosahedra would lead to an aperiodic and highly
strained structure; our B54 is its simplest periodic ap-
proximant.

We have checked thermal stability of this structure
with molecular dynamics simulations. To this end we
replicated the unit cell and ran simulations with NPT en-
semble of 13500 atoms at T = 1200K with the accurate
MTP. After 100 ps we performed relaxation and verified
that no structure transformation occurred. The struc-
ture has specific volume of 7.61 Å3/atom, which is close
to that of β-boron. It has the following elastic constants:
C11 = 418 GPa, C12 = 102 GPa, C44 = 160 GPa, bulk
modulus B = 208 GPa, shear modulus G = 160 GPa and
Young’s modulus E = 381 GPa. It is a brittle metallic
structure according to Pugh’s criterion [43] (with B/G
ratio of 1.3) with the hardness of H = 25.3 GPa calcu-
lated with the formula proposed in [44]. Low mass of
the boron and covalent B-B bonding (leading to strong
electron-phonon coupling) make metallic boron a poten-
tial superconductor, however, here we found Tc < 1K.

In summary, we have proposed and tested a methodol-
ogy for crystal structure prediction, based on a machine-
learning interatomic interaction model and the evolu-
tionary algorithm USPEX. The new methodology is or-
ders of magnitude more computationally efficient com-
pared to the conventional DFT-based algorithms. Our
machine-learning model is automatically trained on-the-
fly and does not require manually assembling the train-
ing dataset, thus seamlessly replacing DFT without sig-
nificant changes to the crystal structure prediction al-
gorithm. We have applied this method to sodium un-
der pressure, and to carbon and boron. For compresed
sodium, all high-pressure phases (including host-guest
tI19 and electride hP4 phases) were found. For carbon,
graphite, diamond, and lonsdaleite were reproduced. For
boron we demonstrated that accuracy of 11 meV/atom is
achievable. All known pure boron allotropes were found
(including disordered β−boron with 106 atoms/cell), and
a new low-energy metallic allotrope predicted.

A.R.O. thanks Russian Science Foundation (grant 16-
13-10459) for financial support. A.V.S. and S.A.V. ac-
knowledge funding from the Skoltech NGP Program No.
2016-7/NGP (a Skoltech-MIT joint project). This work
was performed, in part, at the Center for Integrated Nan-



6

otechnologies, an Office of Science User Facility oper-
ated for the U.S. Department of Energy (DOE) Office of
Science by Los Alamos National Laboratory (Contract
DE-AC52-06NA25396) and Sandia National Laborato-
ries (Contract DE-NA-0003525).

∗ E.Podryabinkin@skoltech.ru
[1] A. R. Oganov, Modern Methods of Crystal Structure Pre-

diction (2010).
[2] A. R. Oganov and C. W. Glass, The Journal of Chemical

Physics 124, 244704 (2006).
[3] A. R. Oganov, A. O. Lyakhov, and M. Valle, Accounts

of Chemical Research 44, 227 (2011).
[4] A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu,

Computer Physics Communications 184, 1172 (2013).
[5] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401

(2007).
[6] K. J. Jose, N. Artrith, and J. r. Behler, Journal of Chem-

ical Physics 136, 194111 (2012).
[7] N. Artrith and A. Urban, Computational Materials Sci-

ence 114, 135 (2016).
[8] J. S. Smith, O. Isayev, and A. E. Roitberg, Chem. Sci.

21, 124 (2017).
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