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MOMENT TENSOR POTENTIALS: A CLASS OF
SYSTEMATICALLY IMPROVABLE INTERATOMIC POTENTIALS∗
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Abstract. Density functional theory offers a very accurate way of computing materials prop-
erties from first principles. However, it is too expensive for modeling large-scale molecular systems
whose properties are, in contrast, computed using interatomic potentials. The present paper con-
siders, from a mathematical point of view, the problem of constructing interatomic potentials that
approximate a given quantum-mechanical interaction model. In particular, a new class of system-
atically improvable potentials is proposed, analyzed, and tested on an existing quantum-mechanical
database.
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1. Introduction. Molecular modeling is an increasingly popular tool in biology,
chemistry, physics, and materials science [15]. The success of molecular modeling
largely depends on the accuracy and efficiency of calculating the interatomic forces.
The two major approaches to computing interatomic forces are (1) quantum mechanics
(QM) calculations [10, 14] and (2) using empirical interatomic potentials. In the first
approach, first the electronic structure is computed and then the forces on the atoms
(more precisely, on their nuclei) are deduced. QM calculations are therefore rather
computationally demanding but can yield a high quantitative accuracy. On the other
hand, the accuracy and transferability of empirical interatomic potentials is limited,
but they are orders of magnitude less computationally demanding. With interatomic
potentials, typically, the forces on atoms derive from the energy of interaction of each
atom with its atomic neighborhood (typically consisting of tens to hundreds of atoms).

This hence makes it very attractive to design a combined approach whose effi-
ciency would be comparable to interatomic potentials, yet the accuracy is similar to
the one obtained with ab initio simulations. Moreover, the scaling of computational
complexity of using the interatomic potentials is O(N), where N is the number of
atoms, whereas, for instance, standard Kohn–Sham density functional theory calcu-
lations scale like O(N3)—which implies that the need in such combined approaches
is even higher for large numbers of atoms.

One way of achieving this is designing accurate interatomic potentials. With this
goal in mind, we categorize all potentials into two groups, following the regression
analysis terminology of [3]. The first group is the parametric potentials with a fixed
number of numerical or functional parameters. All empirical potentials known to the
author are parametric, which is their disadvantage—their accuracy cannot be sys-
tematically improved. As a result, if the class of problems is sufficiently large and
the required accuracy is sufficiently high (say, close to that of ab initio calculations),
then the standard parametric potentials are not sufficient and one needs to employ
nonparametric potentials. In theory, the accuracy of these potentials can be system-
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1154 ALEXANDER V. SHAPEEV

atically improved. In practice, however, increasing the accuracy is done at a cost of
higher computational complexity (which is nevertheless orders of magnitude less than
that of the QM calculations), and the accuracy is still limited by that of the available
QM model the potential is fitted to. Also, it should be noted that, typically, such
fitted potentials do not perform well for the situations that they were not fitted to
(i.e., they exhibit little or no transferability).

Each nonparametric potential has two major components: (1) a representation
(also referred to as “descriptors”) of atomic environments and (2) a regression model
which is a function of the representation. It should be emphasized that finding a
good representation of atomic environments is not a trivial task, as the represen-
tation is required to satisfy certain restrictions, namely, invariance with respect to
Euclidean transformations (translations, rotations, and reflections) and permutation
of chemically equivalent atoms, smoothness with respect to distant atoms coming to
and leaving the boundary of the atomic environment, as well as completeness (for
more details see the discussion in [3, 6, 13]). The latter restriction means that the
representation should contain all the information to unambiguously reconstruct the
atomic environment.

In this context, one common approach to constructing nonparametric poten-
tials, called the neural networks potentials (NNP) [7, 8], is using artificial NNs
as the regression model and a family of descriptors first proposed by Behler and
Parrinello [8]. These descriptors have a form of radial functions applied to and
summed over atomic distances to the central atom of the environment, augmented
with similar functions with angular dependence summed over all pairs of atoms. An-
other approach, called Gaussian approximation potentials (GAP) [4, 27], uses Gaus-
sian process regression and a cleverly designed set of descriptors that are evaluated
by expanding smoothened density field of atoms into a spherical harmonics basis [3].

Other recent approaches include [28], which employs the bispectrum components
of the atomic density, as proposed in an earlier version of GAP [4], and uses a linear
regression model to fit the QM data. Also, [21] uses Gaussian process regression of
a force-based model rather than the potential energy-based model. Additionally, in
a recent work [19] the authors put forward an approach of regressing the interatomic
interaction energy together with the electron density.

It is worthwhile to mention a related field of research, namely, the develop-
ment of nonreactive interatomic potentials. Such potentials assume a fixed under-
lying atomistic structure (fixed interatomic bonds or fixed lattice sites that atoms are
bound to). The works developing nonparametric versions of such potentials include
[1, 17, 24].

In the present paper we propose a new approach to constructing nonparametric
potentials based on linear regression and invariant polynomials. The main feature of
this approach is that the proposed form of the potential can provably approximate
any regular function satisfying all the needed symmetries (see Theorems 3.1 and 3.2),
while being computationally efficient. The building block of the proposed potentials is
what we call the moment tensors—similar to inertia tensors of atomic environments.
Hence we call this approach the moment tensor potentials (MTP).

The manuscript is structured as follows. Section 2 gives an overview of interatomic
potentials. Section 3 introduces MTP and then formulates and proves the two main
theorems. The practical implementation of MTP is discussed in section 4. Section 5
reports the accuracy and computational efficiency (i.e., the CPU time) of MTP and
compares MTP with GAP.
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MOMENT TENSOR POTENTIALS 1155

2. Interatomic potentials. Consider a system consisting of Ntot atoms with
positions x ∈ (Rd)Ntot (more precisely, with positions of their nuclei to be x), where
d is the number of physical dimensions, taken as d = 3 in most of applications. These
atoms have a certain energy of interaction, Eq(x), typically given by some QM model
that we aim to approximate. For simplicity, we assume that all atoms are chemically
equivalent.

We make the assumption that Eq(x) can be well approximated by a sum of
energies of atomic environments of the individual atoms. We denote the atomic envi-
ronment of atom k by Dxk and let it equal to a tuple,

(2.1) Dxk := (xi − xk)1≤i≤Ntot, 0<|xi−xk|≤Rcut
,

where Rcut is the cut-off radius, in practical calculations typically taken to be between
5 and 10Å. In other words, Dxk is the collection of vectors joining atom k with all other
atoms located at distance Rcut or closer. Thus, we are looking for an approximant of
the form

(2.2) E(x) :=

Ntot∑
k=1

V (Dxk),

where V is called the interatomic potential. This assumption is true in most systems
with short-range interactions (as opposed to, e.g., Coulomb interaction in charged
or polarized systems); refer to recent works [11, 12, 23] for rigorous proofs of this
statement for simple QM models.

Mathematically, since Dxk can be a tuple of any size (in practice limited by the
maximal density of atoms), V can be understood as a family of functions each having
a different number of arguments. For convenience, however, we will still refer to V as
a “function.”

The function V = V (u1, . . . , un) is required to satisfy the following restrictions:
(R1) Permutation invariance:

V (u1, . . . , un) = V (uσ1
, . . . , uσn) for any σ ∈ Sn,

where Sn denotes the set of permutations of (1, . . . , n).
(R2) Rotation and reflection invariance:

V (u1, . . . , un) = V (Qu1, . . . , Qun) for any Q ∈ O(d),

where O(d) is the orthogonal group in Rd. For simplicity in what follows we
will denote Qu := (Qu1, . . . , Qun).

(R3) Smoothness with respect to the number of atoms (more precisely, with respect
to atoms leaving and entering the interaction neighborhood):

V : Rd×n → R is a smooth function,

V (u1, . . . , un) = V (u1, . . . , un, un+1) whenever |un+1| ≥ Rcut.

In most of the works performing practical calculations, including [6, 7, 8, 26,
27, 28], the interatomic potentials are chosen such that the energy and forces
are continuous. There are, however, exceptions including [4] that require the
second derivatives of energy to be continuous, and [20] proposing exponential
decay of the potential with no strict cut-off radius.

Note that E is translation symmetric by definition.
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2.1. Empirical interatomic potentials. For the purpose of illustration, we
will briefly present two popular classes of empirical interatomic potentials. The first
class is pair potentials (also known as two-body potentials),

V pair(u) =
∑
i

ϕ(|ui|),

where by u we denote the collection of the relative coordinates, u = (ui)
n
i=1. It is clear

that this potential satisfies (R1) and (R2), while if we take ϕ(r) = 0 for r ≥ Rcut (as is
done in most practical calculations), then it also satisfies (R3). The second potential
is the embedded atom model,

V eam(u) =
∑
i

ϕ(|ui|) + F
(∑

i ρ(|ui|)
)
,

where if ϕ(r) and ρ(r) are chosen to vanish for r ≥ Rcut, then it also satisfies
(R1)–(R3).

Both potentials can be viewed to have descriptors of the form

(2.3) Rν(u) =
∑
i

fν(|ui|),

where fν are chosen such that their linear combination can approximate any smooth
function (e.g., fν(r) = rν(Rcut − r)2 for r ≤ Rcut and fν(r) = 0 for r > Rcut, where
ν = 0, 1, . . .; the term (Rcut − r)2 ensures continuous energy and forces). Then, we
can approximate ϕ(r) ≈

∑
ν cνfν(r) (the sum is taken over some finite set of ν), and

hence
V pair(u) ≈

∑
ν

cνRν(u).

Likewise one can approximate V eam with the exception that it will not be, in general,
a linear function of Rν(u).

This set of descriptors is not complete, because it is based only on the distances
to the central atom, but is insensitive to bond angles.

2.2. Nonempirical interatomic potentials. Next, we review a number of
nonempirical interatomic potentials proposed recently as a more accurate alternative
to the empirical ones.

We start with the NNPs [6, 7, 8]. In addition to the descriptors given by (2.3)
they also employ the descriptors of the form

(2.4)

n∑
i=1

n∑
j=1
j 6=i

f(|ui|, |uj |, ui · uj).

(Note that NN can be, in principle, used with any set of descriptors. If these descrip-
tors are complete, then such NNP is systematically improvable.) Typically, 50 to 100
descriptors of the form (2.3) and (2.4) are chosen as an input to an NN, while its
output yields the function V [7]. In practice, this approach gives convincing results;
however, it is an open question whether these descriptors are complete.

The GAP [4, 27] uses a different idea, consisting of (1) forming a smoothened
atomic density function

n∑
i=1

exp
(
− |ui−u|

2

2σ2

)
,
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(2) approximating it through spherical harmonics, and (3) constructing functionals
applied to the spherical harmonics coefficients that satisfy all needed symmetries. One
can prove mathematically that this approach can approximate any regular symmetric
function (i.e., a function that satisfies (R1)–(R3)). However, expanding functions in
a spherical harmonics basis can be computationally expensive.

Several other nonempirical potentials have been proposed recently. A method
using a representation based on expanding the atomic density function in spherical
harmonics together with linear regression was used in [28]. In [21] the authors use
Gaussian process regression to train a model that predicts forces on atoms directly
(as opposed to a model that fits the energy).

3. Moment tensor potentials.

3.1. Representation with invariant polynomials. In the present paper we
propose an alternative approach based on invariant polynomials. The idea is that any
given potential V ∗(u), if it is smooth enough, can be approximated by a polynomial
p(u) ≈ V ∗(u)—we will analyze the error of such an approximation in section 3.2. The
approximant can always be chosen symmetric. Indeed, given p(u), one can consider
the symmetrized polynomial

(3.1) psym(u1, . . . , un) =
1

n!

∑
σ∈Sn

p(uσ1
, . . . , uσn),

and then V ∗(u) ≈ psym(u). Similarly, one can symmetrize psym with respect to
rotations and reflections. Hence, theoretically, one can construct a basis of such
polynomials bν(u) and choose

V ∗(u) ≈ V (u) :=
∑
ν

cνbν(u).

This approach is implemented for small systems of up to 10 atoms [9]; however,
generalizations of this approach require a more efficient way of generating the invariant
polynomials. The main difficulty is related to the fact that the number of permutations
in a system of n atoms is n!, which grows too fast in order to, for instance, calculate
the right-hand side of (3.1).

In the present paper we propose a basis for the set of all polynomials invari-
ant with respect to permutation, rotation, and reflection. The main feature of the
proposed basis is that the computational complexity of computing these polynomi-
als scales like O(n). Moreover, one can easily construct such bases to also satisfy
the (R3) property (refer to section 4), making it a promising candidate for efficient
nonparametric interatomic potentials.

The M polynomials. The building blocks of the basis functions for the approx-
imation (representation) of V = V (u) are the “moment” polynomials M = M•,•(u)
defined as follows.

For integer µ, ν ≥ 0 we let

Mµ,ν(u) :=

n∑
i=1

|ui|2µu⊗νi ,

where w⊗ν := w⊗ · · · ⊗w is the Kronecker product of ν copies of the vector w ∈ Rd.
Thus, Mµ,ν(u) ∈ (Rd)ν (i.e., an ν-dimensional tensor) for each u. Computing Mµ,ν(u)
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1158 ALEXANDER V. SHAPEEV

requires linear time in n, but exponential in ν. This means that if the maximal value
of ν is bounded, then computing Mµ,ν can be done efficiently.

There is a mechanical interpretation of Mµ,ν(u). Consider µ = 0; then M0,0

simply gives the number of atoms at the distance of Rcut or less (this can also be
understood as the “mass” of these atoms), M0,1 is the center of mass of such atoms
(scaled by the mass), M0,2 is the tensor of second moments of inertia, etc. For µ > 0,
Mµ,ν can be interpreted as weighted moments of inertia, with the ith atom’s weight
being |ui|2µ.

The basis polynomials Bα. The basis polynomials are indexed by k ∈ N,
k ≤ n, where our definition for N is

N = {0, 1, . . .},

and a k × k symmetric matrix α of integers αi,j ≥ 0 (i, j ∈ {1, . . . , k}). For such
matrices, by α′i we define the sum of the off-diagonal elements of the ith row,

(3.2) α′i =

k∑
j=1
j 6=i

αi,j .

Next, we define a contraction operator (product) of tensors T (i) ∈ (Rd)α′i by

k
α∏
i=1

T (i) :=
∑
β

k∏
i=1

T
(i)

β(1,i)...β(i−1,i)β(i,i+1)...β(i,k) ,

where each β is a collection of multi-indices β =
(
β(i,j)

)
1≤i<j≤k, and each multi-index

β(i,j) has the following form:

β(i,j) =
(
β

(i,j)
1 , . . . , β(i,j)

αi,j

)
∈ {1, . . . , d}αi,j , 1 ≤ i < j ≤ k.

To define this contraction rigorously, we let

(3.3) M := {(i, j) ∈ {1, . . . ,m}2 : i < j}, and B := ({1, . . . , d}αij )(i,j)∈M

and, expanding the multiindex notation, we write

k
α∏
i=1

T (i) =
∑
β∈B

k∏
i=1

T
(i)

β
(1,i)
1 ...β

(1,i)
α1i

... β
(i−1,i)
1 ...β

(i−1,i)
αi−1,i

β
(i,i+1)
1 ...β

(i,i+1)
αi,i+1

... β
(i,k)
1 ...β

(i,k)
αi,k

.

Hence αij can be interpreted as how many dimensions are contracted between T (i)

and T (j).
Finally, we let

(3.4) Bα(u) :=

k
α∏
i=1

Mαii,α′i
(u)

and call it a basis function (for a given α). Here Bα(u) is, essentially, a k-body
function. We note that Bα(u) ≡ Bβ(u) if there exists a permutation σ ∈ Sk such that
αij = βσiσj for all i and j.
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For illustrative purposes we work out three examples of different Bα. First, let us
take α = ( µ1 1

1 µ2
). This implies k = 2 (since this is a 2× 2 matrix) and α′1 = α′2 = 1.

Hence Bα is the scalar product of Mµ1,1 and Mµ2,1; indeed,

Bα =

d∑
β
(1,2)
1 =1

(
Mµ1,1

)
β
(1,2)
1

(
Mµ2,1

)
β
(1,2)
1

= Mµ1,1 ·Mµ2,1,

where
(
Mµ1,1

)
β
(1,2)
1

denotes the β
(1,2)
1 th component of the vector Mµ1,1.

As the next example, we take α = ( µ1 2
2 µ2

). Then α′1 = α′2 = 2, and hence Bα is
the Frobenius product of the two matrices, Mµ1,2 and Mµ2,2:

Bα =

d∑
β
(1,2)
1 =1

d∑
β
(1,2)
2 =1

(
Mµ1,2

)
β
(1,2)
1 ,β

(1,2)
2

(
Mµ2,2

)
β
(1,2)
1 ,β

(1,2)
2

= Mµ1,1 :Mµ2,1.

In the last example, we take α =

(
µ1 1 1
1 µ2 0
1 0 µ3

)
. Then Bα is the following contraction

of the matrix Mµ1,2 and two vectors, Mµ2,1 and Mµ2,1:

Bα =

d∑
β
(1,2)
1 =1

d∑
β
(1,3)
1 =1

(
Mµ1,2

)
β
(1,2)
1 ,β

(1,3)
1

(
Mµ2,1

)
β
(1,2)
1

(
Mµ3,1

)
β
(1,3)
1

=
(
Mµ1,2Mµ2,1

)
·Mµ3,1.

Representability. We are now ready to formulate the main result, namely, that
the linear combinations of Bα span all permutation and rotation invariant polynomi-
als. Let us denote the set of all polynomials of n vector-valued variables by P, the set
of permutation invariant polynomials by Pperm ⊂ P, and the set of rotation invariant
polynomials by Prot ⊂ P.

Theorem 3.1. The polynomials Bα form a spanning set of the linear space Prot∩
Pperm ⊂ P in the sense that any p ∈ Prot∩Pperm can be represented by a (finite) linear
combination of Bα (but this combination is, in general, not unique).

We postpone the proof of this result to section 3.3, after we illustrate in section
3.2 that a QM model can be efficiently approximated with polynomials.

3.2. Approximation error estimate. In this section we present an error anal-
ysis of fitting the prototypical tight-binding QM model as proposed in [11, 12] with the
polynomials Bα(u). We note that we directly take the site energy V q(u) constructed
in [11, 12] (rather than starting from the total energy Eq(x)) and fix n to be constant
throughout this analysis. The latter assumption needs some comment. Letting n be
constant is essentially equivalent to assuming finite Rcut, provided that the atoms
cannot come too close to each other. We note that making such assumption is not an
insignificant limitation of the present analysis; however, we find lifting this limitation
not at all trivial.

The QM model is defined as follows. We let, for convenience, u0 := 0 and define
the Hamiltonian matrix

Hij(u) :=

{
ϕ(uj − ui), i, j ∈ {0, . . . , n} and i 6= j,

0, i = j ∈ {0, . . . , n},

where ϕ : Rd → R is an empirically chosen function referred to as the hopping
integral [14].
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Then we apply the function fq to the matrix H (refer to [18] for details on matrix
functions) and define V q as the (0, 0)th element of this matrix:

V q(u) := (fq(H))0,0,

where

fq(ε) := ε
(

1 + eε/(kBT )
)−1

,

where kB > 0 is the Boltzmann constant, and T > 0 is the electronic temperature,
and we take the chemical potential to be zero.

Next, we let R > 0 and δ0 > 0, allow ui to vary in Vδ0 , where

Vδ := {ζ ∈ C : Re(ζ) ∈ [−R− δ,R+ δ]d, Im(ζ) ∈ [−δ, δ]d},

and assume that ϕ(v) is analytically extended to Vδ0 . We note that in many models
ϕ(ζ) has a singularity at ζ = 0 (for example, ϕ(ζ) = β0 exp(−q|ζ|) for some β0, q > 0
[14, equation (7.24)]); therefore by assuming analytical extensibility of ϕ onto Vδ0
we implicitly assume some approximation of such irregular ϕ with a function that
is regular around ζ = 0. For example, one could use the Hermite functions basis,
e−|ζ|

2/2Hn1
(ζ1)Hn2

(ζ2) . . . Hnd(ζd) [25], to approximate ϕ(ζ) away from ζ = 0.

Theorem 3.2. There exist C > 0 and ρ > 1, both depending only on n, δ0, Mδ0 ,
and kBT , such that for any m ∈ N there exists pm ∈ Pperm ∩ Prot of degree m such
that

(3.5) sup
u: maxi |ui|≤R

|V q(u)− pm(u)| < Cρ−m.

The proof of this theorem is based on the following result by Hackbusch and
Khoromskij [16].

Proposition 3.3. Let Eρ := {ζ ∈ C : |z−1|+ |z+ 1| ≤ ρ+ρ−1}, for some ρ > 1,

E(j)
ρ := [−1, 1]j−1 × Eρ × [−1, 1]n−j−1,

f = f(z1, . . . , zn) defined on the union of all E(j)
ρ , and

Mρ(f) := max
1≤j≤n

sup
z∈E(j)ρ

|f(z)|.

Let p = p(z1, . . . , zn) be the polynomial interpolant of f of degree m on the Chebyshev–
Gauss–Lobatto nodes in [−1, 1]n. Then

sup
maxi |zi| ≤1

|f(z)− p(z)| ≤ 2(1 + 2π−1 log(n))mMρ(f)
ρ−m

ρ− 1
.

An illustration of Eρ and Vδ is given in Figure 3.1.

Proof of Theorem 3.2. The plan of the proof is to, after an auxiliary step (Step 1),
successively obtain bounds on ϕ (Step 2), on H(u) (Step 3), and on the interpolating
polynomial (Step 4), and then symmetrize this interpolating polynomial (Step 5).

Step 1. First, we define Mδ := supζ∈Vδ ϕ(ζ) and note that by the Cauchy integral
formula one can bound

|ϕ′(z)| ≤
∣∣∣∣∮
∂V2δ

ϕ(ζ)dζ

(ζ − z)2

∣∣∣∣ =
(2R+ 8δ)M2δ

δ2
=: M ′δ ∀z : |z| ≤ δ.
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Fig. 3.1. Illustration of Vδ (black square) and Eρ (blue ellipse) on the complex plane for R = 1,
δ = 0.4, ρ = 1.4. Both regions contain [–1,1] (red line) and for this choice of parameters Eρ ⊂ Vδ.

This is valid for any δ ≤ δ0/2.
Step 2. Next we let δ ∈ (0, δ0/2], which will be fixed later, and note that if z ∈ Vδ,

then |Im(ϕ(z))| ≤ Im(ϕ(Re(z)))+M ′δ0Im(z) ≤M ′δ0δ thanks to the intermediate value
theorem.

Step 3. Next, following Proposition 3.3, define

Uδ := ∪ni=1Vi−1
0 × Vδ × Vn−i−1

0 .

Hence note that for u ∈ Uδ, H(u) is symmetric (possibly non-Hermitian) with at most
2n elements being nonreal, which makes it easy to estimate using the Frobenius norm:

‖Im(H(u))‖ ≤
√

2nM ′δδ.

By a spectrum perturbation argument (namely, the Bauer–Fike theorem [5]) we have
the corresponding bound on the spectrum:

|Im(Sp(H(u)))| ≤
√

2nM ′δδ.

The real part of the spectrum can be estimated directly through the norm:

|Re(Sp(H(u)))| ≤ ‖H(u)‖ ≤ nMδ0 .

Step 4. We next bound V q(u) for u ∈ Uδ. If needed we decrease δ such that√
2nM ′δδ <

π
3 kBT and use the following representation [11, 18]:

V q(u) = − 1

2πi

∮
γ

fq(z)
(
(H(u)− zI)−1

)
0,0

dz,

where we take γ := ∂Ω, where Ω = {z ∈ C : |Re(z)| ≤ nMδ0 + π
3 kBT, |Im(z)| ≤

2π
3 kBT}. The choice of the region Ω is such that any point z ∈ γ is separated from

any eigenvalue λ of H(u) by the distance |z−λ| ≥ π
3 kBT , and at the same time fq(z)

is regular on Ω. This allows us to estimate, for z ∈ γ,

‖(H(u)− zI)−1‖ ≤
(
π
3 kBT

)−1

and hence
sup
u∈Uδ

|V q(u)| ≤ sup
z∈Ω
|fq(z)| |γ|

(
π
3 kBT

)−1 ≤ C,

where C is a generic constant that depends only on n, δ0, Mδ0 , and kBT . It now
remains to notice that there exists ρ > 1 that depends on δ such that

{z ∈ C : |z/R− 1|+ |z/R+ 1| ≤ ρ+ ρ−1} ⊂ Vδ.
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Hence Proposition 3.3 applies to the function f(z) = V q(Rz) and yields the interpo-
lating polynomial p̃m(u) such that

sup
u: maxi |ui|≤R

|V q(u)− p̃m(u)| ≤ sup
u: maxi |ui|∞≤R

|V q(u)− p̃m(u)| ≤ Cρ−m.

By construction p̃m ∈ Pperm. Indeed, the function f(z) = V q(Rz) is symmetric
with respect to permutation of variables, and so is the Chebyshev–Gauss–Lobatto
interpolation nodes on the domain [−1, 1]n. Hence, uniqueness of interpolation yields
permutation symmetry of p̃m.

Step 5. We define

pm(u) :=

∫
Q∈O(d)

p̃m(Qu)dQ∫
Q∈O(d)

dQ
∈ Pperm ∩ Prot

(where dQ denotes the Haar measure) and thanks to the rotation invariance of V q we
recover (3.5).

It is worth noting that the integration with respect to rotation was used only
as a technical tool in the proof. If we directly constructed an approximation V (u) =∑
α cαBα(u) to V q(u), rather than using the Chebyshev–Gauss–Lobatto interpolation

as an intermediate step, then V (u) would be rotationally invariant by construction.

3.3. Proof of Theorem 3.1. We start with stating the first fundamental the-
orem for the orthogonal group O(d) [30].

Theorem 3.4. p ∈ P is rotation invariant if and only if it can be represented
as a polynomial of n(n + 1)/2 scalar variables of the form rij(u) := ui · uj, where
1 ≤ i ≤ j ≤ n.

We hence can identify a polynomial p = p(u) ∈ Prot with the respective poly-
nomial q = q(r) ∈ Q, where Q is the set of polynomials of n(n + 1) scalar variables
r = (rij)1≤ i,j≤n (we lift the requirement i ≤ j for ease of notation in what follows).

In order to proceed, we introduce the notation of composition of tuples:
(3.6)
ab := (ab1 , . . . , abm) for b = (b1, . . . , bm) ⊂ {1, . . . , n}m and a = (a1, . . . , an).

Hence define
Qperm := {q ∈ Q : q(r) ≡ q(rσσ) ∀σ ∈ Sn}

that corresponds to Pperm, where we likewise let rσσ := (rσiσj )1≤ i,j≤n.
We next formulate a rather intuitive result, essentially stating that Qperm can be

spanned by symmetrizing all monomials of r.

Lemma 3.5.

Qperm = Span

{ ∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσiσj )
αij : m ∈ N, m ≤ n, α ∈ Nm×m

}
.

Proof. If q ∈ Qperm, then

1

n!

∑
σ∈Sn

q(rσσ) =
1

n!

∑
σ∈Sn

q(r) = q(r).

It remains to apply this identity to all monomials q(r) =
∏m
i=1

∏m
j=i r

αij
ij to obtain

the stated result.
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The next step toward proving the main result is the following lemma, where we
denote N := {1, . . . , n}.

Lemma 3.6. For m ∈ N, m ≤ n, and α ∈ Nm×m,

Bα(u) =
∑
γ∈Nm

m∏
i=1

m∏
j=i

(uγi · uγj )αij .

Proof. Before commencing with the proof, we note that we will use the distribu-
tive law of addition and multiplication in the following form:

m∏
j=1

∑
i∈I

f(i, j) =
∑
γ∈Im

m∏
j=1

f(γj , j).

Then

T
(i)

β(1,i)...β(i−1,i)β(i,i+1)...β(i,m)(u) =
∑
γ∈N
|uγ |2αii

(
i−1∏
j=1

(
u⊗αjiγ

)
β(j,i)

)(
m∏

j=i+1

(
u⊗αijγ

)
β(i,j)

)

=
∑
γ∈N
|uγ |2αii

(
i−1∏
j=1

αji∏
`=1

u
γ,β

(j,i)
`

)(
m∏

j=i+1

αij∏
`=1

u
γ,β

(i,j)
`

)
.

We recall the notation α′i and B, introduced in (3.2) and (3.3), respectively, and
hence express

m
α∏
i=1

Mαii,α′i
(u) =

∑
β∈B

m∏
i=1

T
(i)

β(1,i)...β(i−1,i)β(i,i+1)...β(i,m)

=
∑
β∈B

m∏
i=1

∑
γ∈N
|uγ |2αii

(
i−1∏
j=1

αji∏
`=1

u
γ,β

(j,i)
`

)(
m∏

j=i+1

αij∏
`=1

u
γ,β

(i,j)
`

)

=
∑
β∈B

∑
γ∈Nm

m∏
i=1

|uγi |2αii
(
i−1∏
j=1

αji∏
`=1

u
γi,β

(j,i)
`

)(
m∏

j=i+1

αij∏
`=1

u
γi,β

(i,j)
`

)

=
∑
β∈B

∑
γ∈Nm

m∏
i=1

|uγi |2αii
m∏

j=i+1

αij∏
`=1

(
u
γi,β

(i,j)
`

)(
u
γj ,β

(i,j)
`

)
=
∑
γ∈Nm

m∏
i=1

|uγi |2αii
m∏

j=i+1

∑
β∈{1,...,d}αij

αij∏
`=1

(
uγi,β`

)(
uγj ,β`

)
=
∑
γ∈Nm

m∏
i=1

|uγi |2αii
m∏

j=i+1

αij∏
`=1

d∑
β=1

(uγi,β)(uγj ,β)

=
∑
γ∈Nm

m∏
i=1

|uγi |2αii
m∏

j=i+1

αij∏
`=1

uγi · uγj

=
∑
γ∈Nm

m∏
i=1

|uγi |2αii
m∏

j=i+1

(
uγi · uγj

)αij
=
∑
γ∈Nm

m∏
i=1

m∏
j=i

(
uγi · uγj

)αij
.
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Proof of Theorem 3.1. In view of the previous lemma, we can denote

Q̃perm = Span

{ ∑
γ∈Nm

m∏
i=1

m∏
j=i

(rγiγj )
αij : m ∈ N, m ≤ n, α ∈ Nm×m

}

and, applying the earlier lemmas, formulate the statement of Theorem 3.1 as Q̃perm =
Qperm. The latter is an immediate corollary of the following more specialized
result.

Lemma 3.7. For m ∈ N, m ≤ n, denote

Q(m)
perm := Span

{ ∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσiσj )
αij : α ∈ Nm×m

}
and

Q̃(m)
perm := Span

{ ∑
γ∈Nm

m∏
i=1

m∏
j=i

(rγiγj )
αij : α ∈ Nm×m

}
.

Then Q̃(m)
perm = Q(m)

perm.

Before we prove this lemma, we give two auxiliary results.

Lemma 3.8. We equip Nm with the lexicographical order and hence denote by
Γ := {γ ∈ Nm : γ = min{σγ : σ ∈ Sn}} the set of representatives of equivalence
classes {σγ : σ ∈ Sn}, where σγ is understood as composition of tuples (3.6). Also let
Cγ = #{σγ : σ ∈ Sn}, where # denotes the number of elements in a set. Then∑

γ∈Nm

m∏
i=1

m∏
j=i

(rγiγj )
αij =

∑
γ∈Γ

Cγ
n!

∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσγiσγj )αij .

Proof. Any σ ∈ Sn induces a one-to-one mapping γ 7→ σγ on Nm. Hence∑
γ∈Nm

m∏
i=1

m∏
j=i

(rγiγj )
αij =

∑
γ∈Nm

m∏
i=1

m∏
j=i

(rσγiσγj )αij ∀σ ∈ Sn,

therefore ∑
γ∈Nm

m∏
i=1

m∏
j=i

(rγiγj )
αij =

∑
γ∈Nm

1

n!

∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσγiσγj )αij .

It remains to group up the terms for which σγ is the same.

The next auxiliary result is proved by a trivial combinatorial argument, essentially
expressing that all elements of Γ other than (1, . . . ,m) ∈ Γ have repeated values.

Proposition 3.9. Let m ≥ 1. Then Γ = {(1, . . . ,m)} ∪ Γ′, where Γ′ := {γ ∈ Γ :
maxi γi ≤ m− 1}.

Proof of Lemma 3.7. We argue by induction over m. For m = 0 the statement

is obvious since Q(0)
perm = Q̃(0)

perm = Span{1}; therefore we only need to prove the
induction step.

Now, for m ∈ N, m ≤ n, we choose an arbitrary α and let

q(r) :=
∑
σ∈Sn

m∏
j,k=1

(rσjσk)αjk ∈ Qperm and

q̃(r) :=
n!

C{1,...,m}

∑
γ∈Nm

m∏
j,k=1

(rγjγk)αjk ∈ Q̃perm.
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These q(r) and q̃(r) span Q(m)
perm and Q̃(m)

perm, respectively. We aim to show that q(r)−
q̃(r) ∈ Q(m−1)

perm = Q̃(m−1)
perm . This will prove the result considering that, by definition,

Q(m−1)
perm ⊆ Q(m)

perm and Q̃(m−1)
perm ⊆ Q̃(m)

perm.
Indeed, in view of the two previous results, recall the definition Γ′ := {γ ∈ Γ :

maxi γi ≤ m− 1} and write

q̃(r)− q(r) =
n!

C{1,...,m}

∑
γ∈Γ

Cγ
n!

∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσγiσγj )αij −
∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσiσj )
αij

=
∑
γ∈Γ′

Cγ
C{1,...,m}

∑
σ∈Sn

m∏
i=1

m∏
j=i

(rσγiσγj )αij .

Next, we denote

α
(γ)
k` :=

∑
1≤i≤j≤m
γi=k, γj=`

αij

and hence express

q̃(r)− q(r) =
∑
γ∈Γ′

Cγ
C{1,...,m}

∑
σ∈Sn

m−1∏
k=1

m−1∏
`=i

(rσkσ`)
α

(γ)
k` .

Note that the upper limit of both products is m − 1 thanks to the definition of Γ′

(and, of course, Proposition 3.9). Also, note that we used the fact that, from the

definition of α(γ), α
(γ)
k` = 0 whenever k > `. Since

∑
σ∈Sn

∏m−1
k=1

∏m−1
`=i (rσkσ`)

α
(γ)
k` by

definition belongs to Q(m−1)
perm for each γ, we finally derive that

q̃(r)− q(r) ∈ Q(m−1)
perm = Q̃(m−1)

perm .

This concludes the proof of the induction step.

4. Practical implementation. The representation of the interatomic potential
through polynomials, outlined in section 3.1, does not satisfy the (R3) property needed
for the practical implementation. Hence, as the next step we modify the interatomic
potential to satisfy this property. After this, in section 4.1 we discuss the steps needed
to compute Bα(u), and in section 4.2 we describe the algorithms we used for fitting
the potentials.

First, notice that for a fixed ν, a linear combination of moment tensors Mµ,ν(u)
is a polynomial of |ui|2 multiplied by u⊗νi . The space of polynomials of |ui|2 can
be substituted with any other space of functions (which, for generality, can be made
dependent on ν), provided that they can represent any regular function of |u|, i.e.,

(4.1) M̃µ,ν(u) :=

n∑
i=1

fµ,ν(|ui|)u⊗νi ,

where, e.g., fµ,ν(r) = r−µ−νfcut(r) or fµ(r) = e−kµrfcut(r), kµ > 0 is some sequence
of real numbers, and fcut(r) is some cut-off function such that fcut(r) = 0 for r ≥ Rcut.
Here fµ,ν(r) plays essentially the same role as the “radial symmetry functions” in the
NNP [7] or the radial basis functions in [3]. We then let

B̃α(u) :=

k
α∏
i=1

M̃αii,α′i
(u)
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1166 ALEXANDER V. SHAPEEV

(cf. (3.4)) and define the interatomic potential by

V (u) =
∑
α∈A

cαB̃α(u),

where A is a set of matrix-valued indices fixed a priori and cα is the set of coefficients
found in the training stage. For the rest of the paper we will omit tildes in M̃•,• and

B̃•.

4.1. Computing the energy and forces. Next, we discuss the steps needed
to compute the interatomic potential and its derivatives for a given neighborhood
u. The computation consists of two parts, the precomputation (offline) step and the
evaluation (online) step. The precomputation step accepts the set A of values of α as
an input and generates the data for the next step, which is the efficient calculation of
Bα(u) for a given neighborhood u.

Before we proceed, we make two observations.
1. The elements of the tensors Mµ,ν are the “moments” of the form

mµ,β(u) :=

n∑
i=1

fµ,ν(|ui|)
d∏
j=1

u
βj
i,j ,

where β is a multi-index such that |β| = ν. The higher the dimension is, the
more repeated moments each Mµ,ν contains (e.g., each matrix Mµ,2 has nine
elements, out of which at most six may be different due to the symmetricity
of Mµ,2).

2. The scalar functions Bα consist of products of Mµ,ν (which means that the
elements of Bα are linear combinations of products of mµ,β). Differentiating
products of two terms is easier than differentiating products of three or more
terms. Hence it will be helpful to have a representation of Bα as a product
of two tensors.
To that end, we extend the definition of the product

α∏
by allowing the

result to be a tensor of nonzero dimension:( k
α∏
i=1

T (i)

)
β(1,1)...β(k,k)

:=
∑
β∈B

k∏
i=1

T
(i)

β(i,1)...β(i,k) ,

where each T (i) is a tensor of dimension
∑k
j=1 αij (here we let αij = αji), B

is defined in (3.3), and we make a convention that β(i,j) := β(j,i) for i > j.
Hence we define

B̂ᾱ,α(u) :=

k
α∏
i=1

Mᾱi,
∑k
j=1 αij

(u),

parametrized by k ∈ N, ᾱ ∈ Nk, and a symmetric matrix α ∈ Nk×k. B̂ᾱ,α(u)

is a tensor of dimension
∑k
i=1 αii. Clearly if ᾱi = αii for all i, then B̂ᾱ,α = Bα,

which makes the collection of tensors B̂ᾱ,α a generalization of Bα.

Next, consider B̂ᾱ,α(u) for some ᾱ ∈ Nk and α ∈ Nk×k, fix 1 ≤ I ≤ k, and
denote β̄ = (ᾱ1, . . . , ᾱI), γ̄ = (ᾱI+1, . . . , ᾱk),

β :=


α11 +

∑k
i=I+1 αi1 α12 · · · α1I

α12 α22 +
∑k
i=I+1 αi2 · · · α2I

...
...

. . .
...

α1I α2I · · · αII +
∑k
i=I+1 αiI

 ,
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and

γ :=


αI+1,I+1 +

∑I
i=1 αi,I+1 αI+1,I+2 · · · αI+1,k

αI+1,I+2 αI+2,I+2 +
∑I
i=1 αi,I+2 · · · αI+2,k

...
...

. . .
...

αI+1,k αI+2,k · · · αkk +
∑I
i=1 αi,k

 .

One can then express the elements of B̂ᾱ,α(u) through products of elements of B̂β̄,β(u)

and B̂γ̄,γ(u). Note that by reordering the rows and columns of α and β, one can

generate many different ways of representing B̂ᾱ,α(u). When doing computations, one
should exercise this freedom in such a way that the resulting tensors are of minimal
dimension so that the total computation cost is reduced.

Finally, note that even if B̂ᾱ,α(u) was scalar-valued, B̂β̄,β(u) and B̂γ̄,γ(u) do not
have to be scalar-valued—this motivates the need to introduce the tensor-valued basis
functions B̂ᾱ,α(u).

Precomputation. The precomputation step is hence as follows (we keep the
argument u of, e.g., in Bα(u) to match the above notation; however, the particular
values of u never enter the precomputation step):

• Starting with the set of tensors Bα(u) (indexed by α ∈ A), establish their
correspondence to B̂ᾱ,α(u) and recursively represent each B̂ᾱ,α(u) through

some B̂β̄,β(u) and B̂γ̄,γ(u) as described above. In each case, out of all such
products choose the one with the minimal sum of the number of dimensions
of these two tensors.

• Enumerate all the elements of all the tensors B̂ᾱ,α(u) as bi(u) (i is the ordinal
number of the corresponding element).

• Represent each bi(u) as either bi(u)=mµi,βi(u) or bi(u)=
∑Ji
j=1 cjb`j (u)bkj (u).

• Output the resulting
(1) correspondence of Bα(u) to bi(u),
(2) µi and βi, and

(3) tuples of (i, c, `, k) corresponding to bi(u) =
∑Ji
j=1 cjb`j (u)bkj (u).

Evaluation. The evaluation step, as written out below, accepts u as an input
and evaluates Bα(u) using the precomputed data (described above).

1. For a given u, calculate all mµi,βi(u).
2. Then calculate all other bi(u) using the tuples of (i, c, `, k).
3. Finally, pick those bi(u) that correspond to scalar Bα(u) (as opposed to non-

scalar B̂ᾱ,α).
It remains to form the linear combination of Bα(u) with the coefficients obtained

from a linear regression (training), and then sum up all these linear combinations
for all atomic environments to obtain the interatomic interaction energy of a given
atomistic system. The forces are computed by reverse-mode differentiation of the
energy with respect to the atomic positions [22].

4.2. Training. Once the set A of values of α is fixed, we need to determine
the coefficients cα. This is done with the regularized (to avoid overfitting [2]) linear
regression in the following way.

Let a database of atomic configurations X = {x(k) : k = 1, . . . ,K}, where x(k) is
of sizeN (k), be given together with their reference energies and forces, Eq(x(k)) = E(k)

and −∇Eq(x(k)) = f (k). We form an overdetermined system of linear equations on cα,
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N(k)∑
i=1

∑
α∈A

cαB(Dx
(k)
i ) = E(k),

∂

∂x
(k)
j

N(k)∑
i=1

∑
α∈A

cαB(Dx
(k)
i ) = −f (k)

j

(cf. (2.1) and (2.2)), which we write in the matrix form Xc = g. These equations
may be ill-conditioned, hence a regularization must be used. We tried three versions
of regularization, namely, the `p regularization with p ∈ {0, 1, 2}, all described below.
All three can be written as

find min
c
‖Xc− g‖2 subject to ‖c‖2`p ≤ t,

where t is the regularization parameter and ‖c‖`0 is defined as the number of nonzero
entires in c. For p ≥ 1 this can be equivalently rewritten as

find min
c
‖Xc− g‖2 + γ‖c‖2`p ,

where γ is an alternative regularization parameter.

4.2.1. `2 regularization. For the solution of the overdetermined linear equa-
tions Xc = g we take

c = (XTX + γ diag(XTX))−1XT g,

where diag(A) denotes the diagonal matrix whose diagonal elements are the same
as in A. The penalization matrix was chosen as diag(XTX) instead of the identity
matrix so that its scaling with respect to the database size and the scale of the
basis functions Bα, is compatible with that of the covariance matrix XTX. The
regularization parameter γ was determined from the 16-fold cross-validation scheme
[2] as described in the next paragraph.

To perform the 16-fold cross-validation, we split the database X evenly into 16
nonoverlapping databases X̃1, . . . , X̃16. We then train 16 different models, each on
the database X \ X̃i, and find the root mean square (RMS) error when tested on X̃i.
The parameter γ is then chosen such that the cross-validation RMS error averaged
over these 16 models is minimal.

4.2.2. `0 regularization. The advantage of the `0 regularization is that it pro-
duces sparse solutions c, whereas the `2 regularization does not. We note that the
`1 regularization also produces sparse solutions [29], but our numerical experiments
show that the `0 regularization produces significantly more sparse solutions (however,
at a cost of a larger precomputation time).

We thus solve a sequence of problems, parametrized by an integer parameter Nnz

(number of nonzeros) as follows:

find min
c
‖Xc− g‖ subject to ‖c‖`0 = Nnz,

and choose the minimal Nnz such that ‖Xc− g‖ reaches the accuracy goal.
To describe the algorithm, it is convenient to rewrite the problem as follows. Let

A be the set of all indices α (earlier denoted as A).
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find A ⊂ A such that min
c
‖Xc− g‖ is minimal

subject to |A| = Nnz and cA\A = 0.

This is essentially a compressed sensing problem [31]. In order to solve it we take
a standard greedy algorithm (similar to the matching pursuit from the compressed
sensing literature) and turn it into a genetic algorithm by adding the local search and
crossover steps. The main variable in this algorithm is the family (population) of the
sets A which is denoted by A. The cap on the population size is set to be Ncap > 1.
The algorithm is as follows:

1. Let A = {∅} as the solution for Nnz = 0.
2. For each A ∈ A find i /∈ A, such that c corresponding to A ∪ {i} is the best

(i.e., minimizing ‖Xc− g‖). Then replace A with A ∪ {i}.
3. “Crossover”: If |A| > 1, then do the following. For each pair of sets, A,A′ ∈
A, divide randomly these sets into two nonintersecting subsets, A = A1 ∪A2

and A′ = A′1 ∪A′2, and generate new sets A1 ∪A′2 and A′1 ∪A2. To generate
such splittings of the sets, first sample uniformly an integer m ∈ {1, . . . , |A \
A′|} and then form A2 and A′2 by uniformly sampling m distinct elements
from A and A′, respectively. Then replace all the sets in A with the newly
generated sets. (Note that if |A| = Ncap, then up to Ncap(Ncap − 1) sets will

be generated—two sets from each of
(
Ncap

2

)
pairs.)

4. “Local search”:
4.1. For each A ∈ A find j ∈ A such that c corresponding to A \ {j} is the

best.
4.2. Then find i /∈ A \ {j} such that c corresponding to (A \ {j})∪ {i} is the

best.
4.3. If i 6= j, then

4.3a. include (A \ {j}) ∪ {i}, into A
4.3b. if |A| > Ncap, then exclude A from A, and
4.3c. go to step 4.1.

5. Remove all but Ncap best sets in A.
6. Repeat steps 2–5 until the accuracy goal on ‖Xc− g‖ is reached. Then take

the best set A ∈ A and compute the corresponding c.
We note that whenever A is fixed, then finding c corresponding to A is easy:

c = ((XTX)AA)−1(XT g)A, where •A and •AA are the operations of extracting a
subset of rows and columns corresponding to A ⊂ A.

5. Numerical experiments. Our next goal is to understand how MTP per-
forms compared to other interatomic potentials. Unfortunately, there are no existing
works performing quantitative comparison between different machine learning poten-
tials in terms of their accuracy and computational efficiency. In the present work we
compare the performance of MTP with that of GAP for tungsten [26, 27] on the QM
database published at www.libatoms.org together with the GAP code. We test MTP
by fitting it on the database of 9693 configurations of tungsten, with nearly 150,000 in-
dividual atomic environments, and compare it to the analogously fitted GAP, namely,
the one tagged as GAP6 in [27] or as the iterative-SOAP-GAP or I-S-GAP in [26].
We note that this is a database of the Kohn–Sham DFT calculations (as opposed to a
tight-binding model used in the analysis) for an electronic temperature of 1000◦K. We
did not prove algebraic convergence of MTP to this model; however, we will observe
it numerically.
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We choose Rcut = 4.9Å and also set the minimal distance parameter to be Rmin :=
1.9Å. For the radial functions we choose

f̂µ,ν(r) :=

{
r−ν−2rµ(Rcut − r)2, r < Rcut,

0, r ≥ Rcut,

and then for each ν we orthonormalize them on the interval [Rmin, Rcut] with the
weight r2ν(r − Rmin)(Rcut − r). This procedure yields us the functions fµ,ν used
with (4.1). (This procedure is equivalent to first orthonormalizing the functions
r−2rµ(Rcut − r)2 with the weight (r − Rmin)(Rcut − r), the same weight as for the
Chebyshev polynomials, and then multiplying by r−ν .) Here r−ν compensates for
r⊗ν , r−2 prioritizes closer atoms to more distant onces, and (Rcut − r)2 ensures a
smooth cut-off.

5.1. Convergence with the number of basis functions. Even though the-
oretically it is proved that MTP is systematically improvable, the actual accuracy
depends on the size of the regression problem to be solved. We therefore first study
how fast the MTP fit converges with the number of basis functions used.

Theorem 3.2 suggests that the fitting error decreases exponentially with the poly-
nomial degree. At the same time, a crude upper bound on the dimension of the space
of polynomials of degree m is (n+ 1)m, where n is the maximal number of atoms in
an atomic neighborhood. This suggests an algebraic decay of the fitting error with
the number of basis functions.

We hence study convergence of the error of fitting of potentials based on two
choices of the sets of α. The first choice of the set of α, AN , is to limit the corre-
sponding degree of Bα for α ∈ AN by N :

AN = {α : deg(Bα) ≤ N}.

Since fµ,ν are no longer polynomials, we make a convention that the degree of fµ,ν is
µ + 1 (while the degree of the constant function f(u) := 1 is zero). Interestingly, it
was found that a slightly better choice is

A′N = {α : deg(Bα) ≤ N + 8(#α)},

where #α is the length of α. In fact, A′N corresponds to AN if we make another
convention that deg(fµ,ν) = µ+ 5.

Figure 5.1 displays the RMS fitting error in forces as a function of the size of the
set AN . One can observe an algebraic convergence, which indicates that Theorem
3.2 is valid for the Kohn–Sham DFT also. The observed rate is (#A)−0.227, where
the exponent −0.227 is not a universal constant associated with MTP, but depends
on the database chosen. A preasymptotic regime with a faster algebraic convergence
rate can be seen for small #A.

5.2. Performance tests. We next test the performance of MTP and compare
it to GAP in terms of fitting error and computation (CPU) time. We choose two
versions of MTP different from each other by the set A.

The first MTP, denoted by MTP1, is generated by limiting deg(Bα)+8(#α) ≤ 62
and additionally limiting (#α) ≤ 4, µ ≤ 5, and ν ≤ 4. MTP2 is generated by limiting
deg(Bα) + 8(#α) ≤ 52, additionally limiting (#α) ≤ 5, µ ≤ 3, and ν ≤ 5, and
applying the `0 regularization algorithm with Ncap = 4, as described in section 4.2.2,
to extract 760 basis functions (so as to make the accuracy of GAP and MTP2 the
same, as discussed in the next paragraph).
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Fig. 5.1. RMS fitting error in forces as a function of the size of AN and A′N . An algebraic
convergence can be observed.

Table 5.1
Efficiency and accuracy of MTP as compared to GAP. The mean CPU time is given for a

single-core computation on an Intel i7-2675QM laptop CPU, together with the standard deviation
as computed on a number of independent runs. The last section of the table reports the force RMS
errors for the 16-fold cross-validation.

Potential GAP MTP1 MTP2

CPU time/atom [ms] 134.2 ±2.6 2.9 ±0.5 0.8 ±0.2
basis functions 10 000 11 133 760

Fit errors

force RMS error [eV/Å] 0.0633 0.0427 0.0633
[%] 4.2% 2.8% 4.2%

Cross-validation errors
regularization parameter γ - 3 · 10−9 0

force RMS error[eV/Å] - 0.0511 0.0642
[%] - 3.4% 4.3%

The data from the conducted efficiency and accuracy tests are summarized in
Table 5.1. The RMS force (more precisely, RMS of all force components over all
non-single-atom configurations) is 1.505 eV/Å, which is used to compute the relative
RMS error. The errors relative to this RMS force are also presented in the table. The
GAP error is calculated based on the data from [26]. The CPU times do not include
the initialization (precomputation) or constructing the atomistic neighborhoods.

One can see that MTP1 has about the same number of fitting parameters as GAP,
while its fitting accuracy is about 1.5 times better and the computation time is 40
times smaller. MTP2 was constructed such that its fitting accuracy is the same as
GAP, but it uses many fewer parameters for fitting and its computation is more than
two orders of magnitude faster.

Also included in the table is the 16-fold cross-validation error. It shows that MTP2

is not overfitted on the given database, whereas MTP1 needs regularization to avoid
overfitting. We anticipate, however, that by significantly increasing the database size,
the cross-validation error of MTP1 would go down and reach the current fitting error
of MTP1, since the fitting error follows closely the algebraic decay (see Figure 5.1)
and is not expected to deteriorate with increasing the database size.

6. Conclusion. The present paper considers the problem of approximating a
QM interaction model with interatomic potentials from a mathematical point of view.
In particular, (1) a new class of nonparametric (i.e., systematically improvable) po-
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tentials satisfying all the required symmetries has been proposed and advantages in
terms of accuracy and performance over the existing schemes have been discussed and
(2) an algebraic convergence of fitting with these potentials in a simple setting has
been proved and it was then confirmed with the numerical experiments.

This work is done under the assumption that all atoms are chemically equivalent.
A straightforward extension to multicomponent systems would be to let the radial
functions depend not only on the positions of atoms xi but also on the types of atoms
ti Thus, the expression for the moments for atom i could be

Mµ,ν =
∑
j

fµ,ν(|xj − xi|, ti, tj)(xj − xi)⊗ν ,

where the summation is over the neighborhood of atom i. We leave exploring this
path to future publications.
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