Instructor: Alexander Shapeev

Matlab Demonstration (10/11/2013)

(a)

First solve the problem without free nodes We have 5 nodes and 4 trusses:

>> N=5; K=4;

Enter trusses (start point and end point)

>> t=[1 2; 2 3; 3 4; 4 5]

t =

```
Set matrix B:
```

>> for k=1:K, B(k,t(k,1))=-1; B(k,t(k,2))=1; end; >> B

В =

-1	1	0	0	0
0	-1	1	0	0
0	0	-1	1	0
0	0	0	-1	1

Set kappa to be the spring (truss) constants:

```
>> kappa=[1 1 1 1];
>> C = diag(kappa)
```

C =

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1
>> A = B'	*C*B		
1	-1	0	0
-1	2	-1	0
0	-1	2	-1
0	0	-1	2
0	0	0	-1

The matrix A is singular (because we did not fix any nodes):

>> det(A)

ans =

0

The matrix A is singular (because we did not fix any nodes):

(b)

Doing the same thing, but with some nodes fixed: Here M is the number of free nodes

Next, we create a script go.m with the following content:

```
B=zeros(K,M);
for k=1:K
    if(map(t(k,1))~=0)
        B(k,map(t(k,1)))=-1;
    end;
    if(map(t(k,2))~=0)
        B(k,map(t(k,2)))=1;
    end;
end;
```

And continue with Matlab commands:

>> go >> B В =

1 -1 0 0	0 1 -1 0	0 0 1 -1
>> A = B	'∗C*B	
A =		
2	-1	0
-1	2	-1
0	-1	2

Now A is the expected matrix.