Matlab Demonstration (10/11/2013)

(a)

First solve the problem without free nodes
We have 5 nodes and 4 trusses:
>> $\mathrm{N}=5$; $\mathrm{K}=4$;
Enter trusses (start point and end point)
>> t=[1 2; 2 3; $34 ; 4$ 5]
$\mathrm{t}=$

12
23
34
45

Set matrix B :
>> for $k=1: K, B(k, t(k, 1))=-1 ; B(k, t(k, 2))=1$; end;
>> B
$B=$

-1	1	0	0	0
0	-1	1	0	0
0	0	-1	1	0
0	0	0	-1	1

Set kappa to be the spring (truss) constants:
>> kappa=[llll $\left.\begin{array}{lll}1 & 1 & 1\end{array} 1\right] ;$
>> C = diag(kappa)

C =

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1
>> $\mathrm{A}=\mathrm{B}^{\prime} * \mathrm{C} * \mathrm{~B}$			
$\mathrm{A}=$			
1	-1	0	0
-1	2	-1	0
0	-1	2	-1
0	0	-1	2
0	0	0	-1

The matrix A is singular (because we did not fix any nodes):
>> $\operatorname{det}(\mathrm{A})$
ans $=$

0

The matrix A is singular (because we did not fix any nodes):
(b)

Doing the same thing, but with some nodes fixed:
Here M is the number of free nodes

```
>> M=3;
>> map=[0;1;2;3;0]
map =
        0
        1
        2
        3
        0
```

Next, we create a script go.m with the following content:

```
B=zeros(K,M);
for k=1:K
    if(map (t (k,1)) ~}=0
                B(k,map (t (k,1)))=-1;
    end;
    if (map (t (k,2)) ~ =0)
                B (k,map (t (k, 2)) )=1;
    end;
end;
```

And continue with Matlab commands:

```
>> go
>> B
```

B =

1	0	0
-1	1	0
0	-1	1
0	0	-1

$>\mathrm{A}=\mathrm{B}^{\prime} * \mathrm{C} * \mathrm{~B}$
$\mathrm{A}=$

2	-1	0
-1	2	-1
0	-1	2

Now A is the expected matrix.

