Selected Answers to Quiz 1

Problem $1(20 \mathrm{pt})$. For a sequence $x_{n}=n \sin (1 / n)$, compute the limit and determine the rate of convergence. (Hint: use the Taylor's expansion of $\sin x$ for $x \approx 0$.)

Solution. Expand $\sin (x)=x+O\left(x^{3}\right)$ (near $x=0$), hence as $n \rightarrow \infty, x_{n}=n \sin (1 / n)=$ $n\left(1 / n+O\left(1 / n^{3}\right)\right)=1+O\left(1 / n^{2}\right)$. Thus, the limit is 1 and the rate is $1 / n^{2}$.
Problem 2 (10pt). For the following sequence,

n	p_{n}
0	7.10000
1	7.06641
2	7.03536
3	7.01354
4	7.00317
5	7.00036

find out numerically whether its order of convergence to 7 equals $\alpha=1.5$. If yes then determine the asymptotic error constant λ.

Solution. Compute the quantities $\left|p_{n}-7\right| /\left|p_{n-1}-7\right|^{1.5}$ for $n=1,2,3,4,5$ and observe that they approach 2 . This confirms numerically that the order of convergence is 1.5 and $\lambda \approx 2$.
Problem 3 (10pt). Sec. 1.3, Exercise 1(c).
Problem 4 (20pt). Sec. 1.3, Exercise 8.
Problem 5 (20pt). Sec. 1.3, Exercise 16.
Solution. The solution to the equation with the initial condition x_{0} is

$$
x(t)=\frac{\pi}{2} \frac{x_{0}}{t}-\frac{\cos (t)}{t}
$$

The solution with the initial condition $x_{0}+\epsilon$ is

$$
y(t)=\frac{\pi}{2} \frac{x_{0}+\epsilon}{t}-\frac{\cos (t)}{t} .
$$

The difference is

$$
y(t)-x(t)=\frac{\epsilon}{t}
$$

and it decreases as $t \rightarrow+\infty$. Hence the problem is well-conditioned.
Problem 6 (20pt). Sec. 1.4, Exercise 10.
Solution. (b) $y(x) \approx-\frac{x^{3}}{6}$ (or, e.g., $-\frac{x^{3}}{6}+\frac{23 x^{5}}{120}$)

