Quiz 3 (take-home)

due October 4, 2013

Remember to:

- Work on your own.
- Justify your answers (especially when the answer is "yes" or "no", or a single number).
- Provide details (e.g., how to derive a solution).
- Do NOT use red color for your answers.
- Write legibly, especially the answers (if hand-written).

Option 2

Problem 1 (20pt). Sec. 2.3, Exercise 6.

Sol.

(a) p is a fixed point $\Leftrightarrow p=1+p-\frac{1}{8} p^{3} \Leftrightarrow \frac{1}{8} p^{3}=1 \Leftrightarrow p^{3}=8 \Leftrightarrow p=2$. Hence $p=2$ is the only fixed point
(b) No, because $\left|g^{\prime}(x)\right|=\left|1-\frac{3}{8} x^{2}\right|$ cannot be bounded by $k<1$. (That is, there is no such $k<1$ that $\left|g^{\prime}(x)\right| \leq k$ for all x.)
(c) $\left|g^{\prime}(2)\right|=1-\frac{3}{8} 2^{2}=-\frac{1}{2} \neq 0$, hence first order of convergence (see the theorem before the last theorem).
Problem 2 (10pt). Sec. 2.3, Exercise 10.
Sol.
$g(1 / a)=(1 / a)(2-a(1 / a))=1 / a$, hence $1 / a$ is a fixed point.
We have that $g^{\prime}(x)=\left(2 x-a x^{2}\right)^{\prime}=2-2 a x$. Hence $g^{\prime}(1 / a)=2-2 a(1 / a)=0 . g^{\prime \prime}(1 / a)=-2 a$. Hence the order of conv. is $\alpha=2$ and asymp. err. const. is $\lambda=g^{\prime \prime}(1 / a) / 2=-a$ (see the last theorem). Problem 3 (20pt). Sec. 2.4, Exercise 4.

Sol.
(a) $\left(p_{0}, \ldots, p_{5}\right) \approx(1 ., 1.28571,1.19692,1.17169,1.16994,1.16993)$.
(b) $\left(\left(p_{n}-p\right) /\left(p_{n-1}-p\right)^{2}\right)_{n=1, \ldots, 5} \approx(4.00961,2.01301,2.41435,2.55401,2.56421)$ (compute this directly in Matlab, otherwise round-off errors will be huge). This clearly approaches $f^{\prime \prime}(p) /\left(2 f^{\prime}(p)\right) \approx$ 2.56425

Problem 4 (10pt). Sec. 2.4, Exercise 8.
Sol.
$g(x)=x-f(x) / f^{\prime}(x)=x-(1 / x-a) /\left(-1 / x^{2}\right)=x+\left(x-a x^{2}\right)=x(2-a x)$.
Problem 5 (20pt). Sec. 2.5, Exercise 6.
Problem 6 (20pt). Sec. 2.6, Exercise 4.

