Final Study Guide

1. Basic ideas:

- order of convergence
- asymptotic error constant

2. Rootfinding:
(a) Basic ideas:

- multiplicity of roots
(b) Bisection method, False position, Newton's method, Secant method:
- formulation of the algorithm
- be able to compute a few iterations
- requirements for convergence
- order of convergence
(c) Fixed point method in general:
- requirements for existence of a fixed point
- requirements for convergence
- order of convergence
- be able to compute a few iterations
(d) Acceleration of convergence (Aitken's method):
- application of an Aitken's method

3. Systems of equations:
(a) Gaussian elimination

- row operations
- no pivoting, partial pivoting, scaled partial pivoting
- formulation of the algorithm
- application of the algorithm to a 2×2 or 3×3 matrix.
(b) LU decomposition
- via Gaussian elimination and via direct factorization
- using LU factorization for solving systems
- special matrices (diagonally dominant, positive definite, tridiagonal)
- Cholesky decomposition
- be able to find an LU decomposition of 2×2 or 3×3 matrix.
(c) Iterative methods
- iteration matrix and requirements for convergence
- be able to write the iteration matrix and compute a few iterations for the Jacobi method, Gauss-Seidel method, and SOR.
(d) Newton's method
- formulation the method
- be able to compute a few iterations

4. Eigenvalues and Eigenvectors:
(a) Gershgorin's theorem

- be able to localize eigenvalues of a given matrix
(b) Power method, Inverse power method
- what method to use for the eigenvalue which has largest modulus/has smallest modulus/is closest to a given number
- general matrices vs symmetric matrices
- formulation of the method
- be able to compute a few iterations
(c) Deflation (Hotelling, i.e., symmetric only)
- Given A, λ_{1}, and v_{1}, determine the deflated matrix B.

5. Interpolation
(a) Lagrange interpolation

- Lagrange polynomials, Lagrange form of the interpolating polynomial
(b) Newton interpolation
- divided difference table, Newton form of the interpolating polynomial
(c) Optimal points of interpolation (only L_{∞} norm), Chebyshev polynomials T_{n}
- definition, roots and other basic properties of T_{n}
- error estimates for optimal points
(d) Hermite interpolation
- be able to express H_{i} and \hat{H}_{i} through $L_{n, i}$
- be able to write out the interpolating polynomial (through both the Lagrange or Newton approach).
(e) Piecewise linear and Hermite cubic interpolation
- given data, be able to write out interpolation function and evaluate it (or its derivatives) at certain points.
(f) Cubic spline interpolation
- be able to write out the system for c_{j}, solve small systems, and reconstruct $a_{j} / b_{j} / d_{j} /$ function values on a certain interval or a certain point.
(g) Error estimates
- for each interpolation scheme, be able to evaluate or estimate the error of interpolation.

