Final Study Guide

- 1. Basic ideas:
 - order of convergence
 - asymptotic error constant
- 2. Rootfinding:
 - (a) Basic ideas:
 - multiplicity of roots
 - (b) Bisection method, False position, Newton's method, Secant method:
 - formulation of the algorithm
 - be able to compute a few iterations
 - requirements for convergence
 - order of convergence
 - (c) Fixed point method in general:
 - requirements for existence of a fixed point
 - requirements for convergence
 - order of convergence
 - be able to compute a few iterations
 - (d) Acceleration of convergence (Aitken's method):
 - application of an Aitken's method
- 3. Systems of equations:
 - (a) Gaussian elimination
 - row operations
 - no pivoting, partial pivoting, scaled partial pivoting
 - formulation of the algorithm
 - application of the algorithm to a 2×2 or 3×3 matrix.
 - (b) LU decomposition
 - via Gaussian elimination and via direct factorization
 - using LU factorization for solving systems
 - special matrices (diagonally dominant, positive definite, tridiagonal)
 - Cholesky decomposition
 - be able to find an LU decomposition of 2×2 or 3×3 matrix.
 - (c) Iterative methods

- iteration matrix and requirements for convergence
- be able to write the iteration matrix and compute a few iterations for the Jacobi method, Gauss-Seidel method, and SOR.
- (d) Newton's method
 - formulation the method
 - be able to compute a few iterations
- 4. Eigenvalues and Eigenvectors:
 - (a) Gershgorin's theorem
 - be able to localize eigenvalues of a given matrix
 - (b) Power method, Inverse power method
 - what method to use for the eigenvalue which has largest modulus/has smallest modulus/is closest to a given number
 - general matrices vs symmetric matrices
 - formulation of the method
 - be able to compute a few iterations
 - (c) Deflation (Hotelling, i.e., symmetric only)
 - Given A, λ_1 , and v_1 , determine the deflated matrix B.
- 5. Interpolation
 - (a) Lagrange interpolation
 - Lagrange polynomials, Lagrange form of the interpolating polynomial
 - (b) Newton interpolation
 - divided difference table, Newton form of the interpolating polynomial
 - (c) Optimal points of interpolation (only L_{∞} norm), Chebyshev polynomials T_n
 - definition, roots and other basic properties of T_n
 - error estimates for optimal points
 - (d) Hermite interpolation
 - be able to express H_i and \hat{H}_i through $L_{n,i}$
 - be able to write out the interpolating polynomial (through both the Lagrange or Newton approach).
 - (e) Piecewise linear and Hermite cubic interpolation
 - given data, be able to write out interpolation function and evaluate it (or its derivatives) at certain points.
 - (f) Cubic spline interpolation
 - be able to write out the system for c_j , solve small systems, and reconstruct $a_j/b_j/d_j/function$ values on a certain interval or a certain point.
 - (g) Error estimates
 - for each interpolation scheme, be able to evaluate or estimate the error of interpolation.