Midterm Study Guide

- 1. Basic ideas:
 - order of convergence
 - asymptotic error constant
- 2. Rootfinding:
 - (a) Basic ideas:
 - multiplicity of roots
 - (b) Bisection method, False position, Newton's method, Secant method:
 - formulation of the algorithm
 - be able to compute a few iterations
 - requirements for convergence
 - order of convergence
 - (c) Fixed point method in general:
 - requirements for existence of a fixed point
 - requirements for convergence
 - order of convergence
 - be able to compute a few iterations
 - (d) Acceleration of convergence (Aitken's method):
 - application of an Aitken's method
- 3. Systems of equations:
 - (a) Gaussian elimination
 - row operations
 - no pivoting, partial pivoting, scaled partial pivoting
 - formulation of the algorithm
 - application of the algorithm to a 2×2 or 3×3 matrix.
 - (b) LU decomposition
 - via Gaussian elimination and via direct factorization

- using LU factorization for solving systems
- special matrices (diagonally dominant, positive definite, tridiagonal)
- Cholesky decomposition
- be able to find an LU decomposition of 2×2 or 3×3 matrix.
- (c) Iterative methods
 - iteration matrix and requirements for convergence
 - be able to write the iteration matrix and compute a few iterations for the Jacobi method, Gauss-Seidel method, and SOR.
- (d) Newton's method
 - formulation the method
 - be able to compute a few iterations
- 4. Eigenvalues and Eigenvectors:
 - (a) Gershgorin's theorem
 - be able to localize eigenvalues of a given matrix
 - (b) Power method, Inverse power method
 - what method to use for the eigenvalue which has largest modulus/has smallest modulus/is closest to a given number
 - general matrices vs symmetric matrices
 - formulation of the method
 - be able to compute a few iterations